Abstract

A mode-locked laser is employed as the light source of a laser autocollimator, instead of the conventionally employed single-wavelength laser, for an expanded range of tilt angle measurement. A group of the spatially separated diffracted beams from a diffraction grating are focused by a collimator objective to form an array of light spots on the focal plane of the collimator objective where a light position-sensing photodiode is located for detecting the linear displacement of the light spot array corresponding to the tilt angle of the reflector. A prototype mode-locked femtosecond laser autocollimator is designed and constructed for achieving a measurement range of 11000 arc-seconds.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical frequency domain angle measurement in a femtosecond laser autocollimator

Yuan-Liu Chen, Yuki Shimizu, Jun Tamada, Yukitoshi Kudo, Shuhei Madokoro, Kazuki Nakamura, and Wei Gao
Opt. Express 25(14) 16725-16738 (2017)

Cube-corner autocollimator with expanded measurement range

Renpu Li, Min Zhou, Igor Konyakhin, Ke Di, Yongle Lu, Junqi Guo, and Yu Liu
Opt. Express 27(5) 6389-6403 (2019)

Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions

Yuki Shimizu, Siew Leng Tan, Dai Murata, Taiji Maruyama, So Ito, Yuan-Liu Chen, and Wei Gao
Opt. Express 24(3) 2788-2805 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
    [Crossref]
  2. J. W. Kim, C. S. Kang, J. A. Kim, T. Eom, M. Cho, and H. J. Kong, “A compact system for simultaneous measurement of linear and angular displacements of nano-stages,” Opt. Express 15(24), 15759–15766 (2007).
    [Crossref] [PubMed]
  3. K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
    [Crossref]
  4. E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
    [Crossref]
  5. W. Gao, Precision Nanometrology - Sensors and Measuring Systems for Nanomanufacturing (Springer, 2010).
  6. H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
    [Crossref]
  7. T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
    [Crossref]
  8. F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato, “Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry,” Opt. Express 20(4), 4525–4536 (2012).
    [Crossref] [PubMed]
  9. W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
    [Crossref]
  10. Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
    [Crossref]
  11. W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
    [Crossref]
  12. Möller-Werdel optical GmbH data sheet, “Electric Autocollimators,” http://www.moeller-wedel-optical.com (accessed 8 May 2016).
  13. A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
    [Crossref]
  14. W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
    [Crossref]
  15. S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
    [Crossref]
  16. Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
    [Crossref] [PubMed]
  17. W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
    [Crossref]
  18. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  19. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  20. S. W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [Crossref]
  21. S. H. Lee, J. Lee, Y. J. Kim, K. Lee, and S. W. Kim, “Active compensation of large dispersion of femtosecond pulses for precision laser ranging,” Opt. Express 19(5), 4002–4008 (2011).
    [Crossref] [PubMed]
  22. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [Crossref] [PubMed]
  23. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
    [Crossref] [PubMed]
  24. T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
    [Crossref]
  25. Scientific Solutions Inc, 2001, “Properties of SSI’s Liquid Crystal Tunable Filter,” http://www.sci-sol.com/lcproperties.pdf (accessed 8 May 2016)
  26. J. Davila-Rodriguez, K. Bagnell, and P. J. Delfyett, “Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon,” Opt. Lett. 38(18), 3665–3668 (2013).
    [Crossref] [PubMed]
  27. M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

2013 (1)

2012 (3)

2011 (5)

2010 (1)

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

2009 (2)

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

S. W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

2007 (2)

J. W. Kim, C. S. Kang, J. A. Kim, T. Eom, M. Cho, and H. J. Kong, “A compact system for simultaneous measurement of linear and angular displacements of nano-stages,” Opt. Express 15(24), 15759–15766 (2007).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

2004 (1)

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

2002 (5)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
[Crossref]

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

1982 (1)

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Akbulut, M.

Akgoz, S. A.

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Arai, Y.

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

Bagnell, K.

Bosse, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Boutet, S.

Buchheim, J.

Chen, Y. L.

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Cho, M.

Davila-Rodriguez, J.

Delfyett, P. J.

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Ennos, A. E.

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Eom, T.

Estler, W. T.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Fan, K. C.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Fussl, R.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Gao, W.

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
[Crossref]

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Haitjema, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hauck, C. A.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

Hausotte, T.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Hoghooghi, N.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Huang, P. S.

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Ito, S.

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

Jager, G.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Kang, C. S.

Kim, J. A.

Kim, J. W.

Kim, S. W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

S. H. Lee, J. Lee, Y. J. Kim, K. Lee, and S. W. Kim, “Active compensation of large dispersion of femtosecond pulses for precision laser ranging,” Opt. Express 19(5), 4002–4008 (2011).
[Crossref] [PubMed]

S. W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Kim, Y. J.

Kiyono, S.

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
[Crossref]

Knapp, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Kong, H. J.

Krzywinski, J.

Kunzmann, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Lee, J.

Lee, K.

Lee, S. H.

Lin, S. Y.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Liu, Y. C.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Lu, X. D.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Manske, E.

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Maruyama, T.

Matsumoto, H.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Meguro, T.

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

Montanez, P. A.

Murata, D.

Muto, H.

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Ohnuma, H.

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

Ozdur, I.

Ozharar, S.

Pfeifer, T.

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Quinlan, F.

Rube, U. N.

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Saito, Y.

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

Sata, T.

W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
[Crossref]

Satoh, E.

W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
[Crossref]

Satoh, H.

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

Schwenke, H.

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Shimizu, H.

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

Shimizu, Y.

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

Siewert, F.

Signorato, R.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

Takahashi, S.

Takamasu, K.

Tan, S. L.

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

Udem, T.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Virdee, M. S.

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Wang, T. H.

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

Wang, X.

Weckenmann, A.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

Wei, D.

Wilken, T.

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

Williams, G. J.

Yamada, T.

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

Yandayan, T.

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

Appl. Phys. B (1)

T. Steinmetz, T. Wilken, C. A. Hauck, R. Holzwarth, T. W. Hänsch, and T. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2), 251–256 (2009).
[Crossref]

CIRP Ann.-Manuf. Technol. (4)

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision engineering,” CIRP Ann.-Manuf. Technol. 64(2), 773–796 (2015).
[Crossref]

W. Gao, S. Kiyono, E. Satoh, and T. Sata, “Precision measurement of multi-degree-of-freedom spindle errors using two-dimensional slope sensors,” CIRP Ann.-Manuf. Technol. 51(1), 447–450 (2002).
[Crossref]

W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann.-Manuf. Technol. 60(1), 515–518 (2011).
[Crossref]

W. Gao, H. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision angle sensor using a multi-cell photodiode array,” CIRP Ann.-Manuf. Technol. 53(1), 425–428 (2004).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

S. L. Tan, Y. Shimizu, T. Meguro, S. Ito, and W. Gao, “Design of a laser autocollimator-based optical sensor with a rangefinder for error correction of precision slide guideways,” Int. J. Precis. Eng. Manuf. 16(3), 423–431 (2015).
[Crossref]

Manuf. Technol. (1)

H. Schwenke, U. N. Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” CIRP Ann.-,” Manuf. Technol. 51(2), 685–699 (2002).
[Crossref]

Meas. Sci. Technol. (3)

K. C. Fan, T. H. Wang, S. Y. Lin, and Y. C. Liu, “Design of a dual-axis optoelectronic level for precision angle measurements,” Meas. Sci. Technol. 22(5), 055302 (2011).
[Crossref]

E. Manske, G. Jager, T. Hausotte, and R. Fussl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23(7), 074001 (2012).
[Crossref]

Y. Saito, Y. Arai, and W. Gao, “Investigation of an optical sensor for small tilt angle detection of a precision linear stage,” Meas. Sci. Technol. 21(5), 054006 (2010).
[Crossref]

Nat. Photonics (1)

S. W. Kim, “Metrology: combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[Crossref]

Nature (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (7)

Y. Shimizu, S. L. Tan, D. Murata, T. Maruyama, S. Ito, Y. L. Chen, and W. Gao, “Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions,” Opt. Express 24(3), 2788–2805 (2016).
[Crossref] [PubMed]

J. W. Kim, C. S. Kang, J. A. Kim, T. Eom, M. Cho, and H. J. Kong, “A compact system for simultaneous measurement of linear and angular displacements of nano-stages,” Opt. Express 15(24), 15759–15766 (2007).
[Crossref] [PubMed]

F. Siewert, J. Buchheim, S. Boutet, G. J. Williams, P. A. Montanez, J. Krzywinski, and R. Signorato, “Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry,” Opt. Express 20(4), 4525–4536 (2012).
[Crossref] [PubMed]

S. H. Lee, J. Lee, Y. J. Kim, K. Lee, and S. W. Kim, “Active compensation of large dispersion of femtosecond pulses for precision laser ranging,” Opt. Express 19(5), 4002–4008 (2011).
[Crossref] [PubMed]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20(3), 2725–2732 (2012).
[Crossref] [PubMed]

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P. J. Delfyett, “Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb,” Opt. Express 19(18), 16851–16865 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Precis. Eng. (3)

W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396–404 (2002).
[Crossref]

T. Yandayan, S. A. Akgoz, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Precis. Eng. 26(4), 412–424 (2002).
[Crossref]

A. E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation,” Precis. Eng. 4(1), 5–8 (1982).
[Crossref]

Other (3)

Möller-Werdel optical GmbH data sheet, “Electric Autocollimators,” http://www.moeller-wedel-optical.com (accessed 8 May 2016).

W. Gao, Precision Nanometrology - Sensors and Measuring Systems for Nanomanufacturing (Springer, 2010).

Scientific Solutions Inc, 2001, “Properties of SSI’s Liquid Crystal Tunable Filter,” http://www.sci-sol.com/lcproperties.pdf (accessed 8 May 2016)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the conventional laser autocollimator.
Fig. 2
Fig. 2 Schematic of the laser autocollimator based on a multi-cell PD array.
Fig. 3
Fig. 3 Basic concept of the mode-locked laser autocollimator with an expanded measurement range.
Fig. 4
Fig. 4 Schematic of characterization of the focused light spot array by a mode-locked laser: (a) with low repetition rate; (b) high repetition rate.
Fig. 5
Fig. 5 Modulation of the focused light spot array by using a Fabry-Pérot etalon.
Fig. 6
Fig. 6 Simulation result of the autocollimator output with different Fabry Perot etalons with different FSR: (a) 25 GHz; (b) 100 GHz; (c) 136 GHz; (d) 200 GHz; (e) 652 GHz; and (f) 770 GHz.
Fig. 7
Fig. 7 Schematic of the autocollimator output with respect to the tilt angle.
Fig. 8
Fig. 8 Schematic and photograph of a basic experimental setup.
Fig. 9
Fig. 9 Measured mode-locked laser autocollimator output vs. tilt angle of the stage in the basic experimental setup.
Fig. 10
Fig. 10 Measurement by the experimental setup with a beam expander: (a) schematic of the setup; (b) measurement result.
Fig. 11
Fig. 11 Schematic and photograph of the improved experimental setup.
Fig. 12
Fig. 12 Measured autocollimator output vs. tilt angle of stage in the improved experimental setup.
Fig. 13
Fig. 13 Normalization of the autocollimator output: (a) Amplitudes of the autocollimator output with respect to the period number; (b) Normalized output.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β i =arcsin( c n air g ν i sinα ),(i=1,...,N)
Δ θ r i = β i β 1 (i=1,2,...,N)
d gi =1.22 fc n air D b ν i
Δ β i = β i+1 β i
s gi =2fΔ β i =2f( β i+1 β i )
Δ θ zj_l = Δ l 1jl 2f = Δ l 1j +Δ l 1 +Δ l 2 2f
Δ θ zj_l = 2f( β j β 1 )+Δ l 1 +Δ l 2 2f =( β j β 1 )+ Δ l 1 2f + Δ l 2 2f
visibility= V kmax V kmin V kmax + V kmin

Metrics