Abstract

The implementation, performance validation, and testing of a gas-leak optical sensor based on mid-IR quartz-enhanced photoacoustic (QEPAS) spectroscopic technique is reported. A QEPAS sensor was integrated in a vacuum-sealed test station for mechatronic components. The laser source for the sensor is a quantum cascade laser emitting at 10.56 µm, resonant with a strong absorption band of sulfur hexafluoride (SF6), which was selected as a leak tracer. The minimum detectable concentration of the QEPAS sensor is 2.7 parts per billion with an integration time of 1 s, corresponding to a sensitivity of leak flows in the 10−9 mbar∙l/s range, comparable with state-of-the-art leak detection techniques.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring

Xukun Yin, Lei Dong, Hongpeng Wu, Lei Zhang, Weiguang Ma, Wangbao Yin, Liantuan Xiao, Suotang Jia, and Frank K. Tittel
Opt. Express 27(4) A224-A234 (2019)

THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection

Vincenzo Spagnolo, Pietro Patimisco, Riccardo Pennetta, Angelo Sampaolo, Gaetano Scamarcio, Miriam S. Vitiello, and Frank K. Tittel
Opt. Express 23(6) 7574-7582 (2015)

Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone

Marilena Giglio, Arianna Elefante, Pietro Patimisco, Angelo Sampaolo, Fabrizio Sgobba, Hubert Rossmadl, Verena Mackowiak, Hongpeng Wu, Frank K. Tittel, Lei Dong, and Vincenzo Spagnolo
Opt. Express 27(4) 4271-4280 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).
  2. L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
    [Crossref]
  3. P. E. Mix, Leak Testing Methods, in Introduction to Nondestructive Testing: A Training Guide (John Wiley & Sons, Inc., 2004).
  4. S. Millar and M. Desmulliez, “MEMS ultra low leak detection methods: a review,” Sens. Rev. 29(4), 339–344 (2009).
    [Crossref]
  5. S. Kai-lei and S. Xin-li, “Summary of the theory and method of vacuum helium-mass-spectroscopy leak detection,” Vacuum Electronics 6, 62–65 (2007).
  6. A. Calcatelli, M. Bergoglio, and D. Mari, “Leak detection, calibrations and reference flows: practical example,” Vacuum 81(11-12), 1538–1544 (2007).
    [Crossref]
  7. N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
    [Crossref]
  8. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
    [Crossref] [PubMed]
  9. Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
    [Crossref] [PubMed]
  10. A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
    [Crossref] [PubMed]
  11. C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
    [Crossref]
  12. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
    [Crossref] [PubMed]
  13. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
    [Crossref] [PubMed]
  14. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
    [Crossref]
  15. A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
    [Crossref] [PubMed]
  16. M. Maiss and C. A. M. Brenninkmeijer, “Atmospherics SF6: trends, sources and prospects,” Environ. Sci. Technol. 32(20), 3077–3086 (1998).
    [Crossref]
  17. A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
    [Crossref]
  18. P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
    [Crossref]
  19. A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
    [Crossref] [PubMed]
  20. H. R. Carlon, “Infrared absorption coefficients (3-15 µ) for sulfur hexafluoride (SF(6)) and Freon (CCI(2)F(2)),” Appl. Opt. 18(10), 1474–1475 (1979).
    [Crossref] [PubMed]
  21. D. M. Cox and A. Gnauk, “Continuous wave CO2 laser spectroscopy of SF6, WF6 and UF6,” J. Mol. Spectrosc. 81, 205–215 (1980).
  22. Available online: http://www.hitran.com
  23. M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
    [Crossref] [PubMed]
  24. A. Roth, Vacuum Technology (Elsevier Science Publishers, 1990).
  25. J. F. O’Hanlon, A Users Guide to Vacuum Technology (John Wiley and Sons, 1989).
  26. J. M. Lafferty, Foundations of Vacuum Science and Technology (John Wiley and Sons, 1998).
  27. A. Pregelj, M. Drab, and M. Mozetic, “Leak detection methods and defining the sizes of leaks,” in 4th International Conference of Slovenian Society for Nondestructive Testing (1997).

2016 (2)

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

2015 (3)

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

2014 (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

2013 (2)

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

2009 (2)

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
[Crossref] [PubMed]

S. Millar and M. Desmulliez, “MEMS ultra low leak detection methods: a review,” Sens. Rev. 29(4), 339–344 (2009).
[Crossref]

2007 (3)

S. Kai-lei and S. Xin-li, “Summary of the theory and method of vacuum helium-mass-spectroscopy leak detection,” Vacuum Electronics 6, 62–65 (2007).

A. Calcatelli, M. Bergoglio, and D. Mari, “Leak detection, calibrations and reference flows: practical example,” Vacuum 81(11-12), 1538–1544 (2007).
[Crossref]

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

2006 (1)

L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
[Crossref]

2005 (1)

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

2000 (1)

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

1998 (1)

M. Maiss and C. A. M. Brenninkmeijer, “Atmospherics SF6: trends, sources and prospects,” Environ. Sci. Technol. 32(20), 3077–3086 (1998).
[Crossref]

1980 (1)

D. M. Cox and A. Gnauk, “Continuous wave CO2 laser spectroscopy of SF6, WF6 and UF6,” J. Mol. Spectrosc. 81, 205–215 (1980).

1979 (1)

Bartalini, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Beere, H. E.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

Bergoglio, M.

A. Calcatelli, M. Bergoglio, and D. Mari, “Leak detection, calibrations and reference flows: practical example,” Vacuum 81(11-12), 1538–1544 (2007).
[Crossref]

Bernacki, B. E.

Bernstein, R. W.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Borri, S.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
[Crossref] [PubMed]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Brenninkmeijer, C. A. M.

M. Maiss and C. A. M. Brenninkmeijer, “Atmospherics SF6: trends, sources and prospects,” Environ. Sci. Technol. 32(20), 3077–3086 (1998).
[Crossref]

Bychkov, K. V.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Cai, M.

L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
[Crossref]

Calcatelli, A.

A. Calcatelli, M. Bergoglio, and D. Mari, “Leak detection, calibrations and reference flows: practical example,” Vacuum 81(11-12), 1538–1544 (2007).
[Crossref]

Cancio, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Carlon, H. R.

Cox, D. M.

D. M. Cox and A. Gnauk, “Continuous wave CO2 laser spectroscopy of SF6, WF6 and UF6,” J. Mol. Spectrosc. 81, 205–215 (1980).

De Natale, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Desmulliez, M.

S. Millar and M. Desmulliez, “MEMS ultra low leak detection methods: a review,” Sens. Rev. 29(4), 339–344 (2009).
[Crossref]

Di Franco, C.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
[Crossref] [PubMed]

Drab, M.

A. Pregelj, M. Drab, and M. Mozetic, “Leak detection methods and defining the sizes of leaks,” in 4th International Conference of Slovenian Society for Nondestructive Testing (1997).

Elia, A.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
[Crossref] [PubMed]

Fallet, T.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Furuberg, L.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Galli, I.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Giglio, M.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

Giusfredi, G.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Gnauk, A.

D. M. Cox and A. Gnauk, “Continuous wave CO2 laser spectroscopy of SF6, WF6 and UF6,” J. Mol. Spectrosc. 81, 205–215 (1980).

Harus, L. G.

L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
[Crossref]

Javahiraly, N.

N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
[Crossref]

Kai-lei, S.

S. Kai-lei and S. Xin-li, “Summary of the theory and method of vacuum helium-mass-spectroscopy leak detection,” Vacuum Electronics 6, 62–65 (2007).

Kapitanov, V. A.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Karapuzikov, A. I.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Kawashima, K.

L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
[Crossref]

Kosterev, A. A.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Kriesel, J.

Kriesel, J. M.

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

Lee, C. M.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Liang, T.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Liu, J.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Lugarà, P. M.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
[Crossref] [PubMed]

Lund, E.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Maiss, M.

M. Maiss and C. A. M. Brenninkmeijer, “Atmospherics SF6: trends, sources and prospects,” Environ. Sci. Technol. 32(20), 3077–3086 (1998).
[Crossref]

Malinovsky, A.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Mari, D.

A. Calcatelli, M. Bergoglio, and D. Mari, “Leak detection, calibrations and reference flows: practical example,” Vacuum 81(11-12), 1538–1544 (2007).
[Crossref]

Mazzotti, D.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Millar, S.

S. Millar and M. Desmulliez, “MEMS ultra low leak detection methods: a review,” Sens. Rev. 29(4), 339–344 (2009).
[Crossref]

Moe, S. T.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Morozov, A.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Mozetic, M.

A. Pregelj, M. Drab, and M. Mozetic, “Leak detection methods and defining the sizes of leaks,” in 4th International Conference of Slovenian Society for Nondestructive Testing (1997).

Nysæther, J.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Patimisco, P.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
[Crossref] [PubMed]

Pei, X.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Ponomarev, Y. N.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Pregelj, A.

A. Pregelj, M. Drab, and M. Mozetic, “Leak detection methods and defining the sizes of leaks,” in 4th International Conference of Slovenian Society for Nondestructive Testing (1997).

Ritchie, D. A.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

Sampaolo, A.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

Scamarcio, G.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
[Crossref] [PubMed]

Schjølberg-Henriksen, K.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Serebryakov, D.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Sherstov, I. V.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Spagnolo, V.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
[Crossref] [PubMed]

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
[Crossref] [PubMed]

Sun, D.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Tan, Q.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Tittel, F. K.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, “Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm,” Opt. Express 23(1), 195–204 (2015).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Toshiharu, K.

L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
[Crossref]

Vasiliev, V. A.

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Visser, M.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Vitiello, M. S.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

Wang, D. T.

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Xin-li, S.

S. Kai-lei and S. Xin-li, “Summary of the theory and method of vacuum helium-mass-spectroscopy leak detection,” Vacuum Electronics 6, 62–65 (2007).

Xiong, J.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Xue, C.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Zhang, W.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Zhu, S.

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Environ. Sci. Technol. (1)

M. Maiss and C. A. M. Brenninkmeijer, “Atmospherics SF6: trends, sources and prospects,” Environ. Sci. Technol. 32(20), 3077–3086 (1998).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Giglio, P. Patimisco, A. Sampaolo, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Allan deviation plot as a tool for quartz enhanced photoacoustic sensors noise analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016).
[Crossref] [PubMed]

J. Appl. Phys. (1)

P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, “Hollow core waveguide as mid-infrared laser modal beam filter,” J. Appl. Phys. 118(11), 113102 (2015).
[Crossref]

J. Mol. Spectrosc. (1)

D. M. Cox and A. Gnauk, “Continuous wave CO2 laser spectroscopy of SF6, WF6 and UF6,” J. Mol. Spectrosc. 81, 205–215 (1980).

Meas. Sci. Technol. (1)

L. G. Harus, M. Cai, K. Kawashima, and K. Toshiharu, “Determination of temperature recovery time in differential-pressure-based air leak detector,” Meas. Sci. Technol. 17(2), 411–418 (2006).
[Crossref]

Opt. Eng. (2)

N. Javahiraly, “Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium,” Opt. Eng. 54(3), 030901 (2015).
[Crossref]

C. M. Lee, K. V. Bychkov, V. A. Kapitanov, A. I. Karapuzikov, Y. N. Ponomarev, I. V. Sherstov, and V. A. Vasiliev, “High-sensitivity laser photoacoustic leak detector,” Opt. Eng. 46(6), 064302 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Sens. Rev. (1)

S. Millar and M. Desmulliez, “MEMS ultra low leak detection methods: a review,” Sens. Rev. 29(4), 339–344 (2009).
[Crossref]

Sensor. Actuat. A-Phys. (1)

S. T. Moe, K. Schjølberg-Henriksen, D. T. Wang, E. Lund, J. Nysæther, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, “Capacitive differential pressure sensor for harsh environments,” Sensor. Actuat. A-Phys. 83, 30–33 (2000).

Sensors (Basel) (4)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439 (2016).
[Crossref] [PubMed]

Q. Tan, X. Pei, S. Zhu, D. Sun, J. Liu, C. Xue, T. Liang, W. Zhang, and J. Xiong, “Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane,” Sensors (Basel) 13(4), 4157–4169 (2013).
[Crossref] [PubMed]

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors (Basel) 9(12), 9616–9628 (2009).
[Crossref] [PubMed]

Vacuum (1)

A. Calcatelli, M. Bergoglio, and D. Mari, “Leak detection, calibrations and reference flows: practical example,” Vacuum 81(11-12), 1538–1544 (2007).
[Crossref]

Vacuum Electronics (1)

S. Kai-lei and S. Xin-li, “Summary of the theory and method of vacuum helium-mass-spectroscopy leak detection,” Vacuum Electronics 6, 62–65 (2007).

Other (6)

P. E. Mix, Leak Testing Methods, in Introduction to Nondestructive Testing: A Training Guide (John Wiley & Sons, Inc., 2004).

Available online: http://www.hitran.com

A. Roth, Vacuum Technology (Elsevier Science Publishers, 1990).

J. F. O’Hanlon, A Users Guide to Vacuum Technology (John Wiley and Sons, 1989).

J. M. Lafferty, Foundations of Vacuum Science and Technology (John Wiley and Sons, 1998).

A. Pregelj, M. Drab, and M. Mozetic, “Leak detection methods and defining the sizes of leaks,” in 4th International Conference of Slovenian Society for Nondestructive Testing (1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Block diagram of the experimental apparatus. ADM = Acoustic detection module; QTF = Quartz tuning fork; HCW = Hollow core waveguide; EC-QCL = external cavity quantum cascade laser; CEU = Control electronics unit; DAQ = Data acquisition.
Fig. 2
Fig. 2 a) QEPAS scans of the absorption line centered at 947.93 cm−1 measured for SF6 concentrations of 741, 506, 260 and 132 ppb. The frequency of the voltage ramp used to scan the laser wavelength across the absorption line is 10 mHz. b) QEPAS peak signals as a function of the SF6 concentration. The straight line is a linear fit of the experimental points.
Fig. 3
Fig. 3 Allan deviation in ppb of the QEPAS signal as a function of the integration time.
Fig. 4
Fig. 4 Block diagram of the leak-test station. ADM = Acoustic detection module; HCW = Hollow core waveguide; QCL = quantum cascade laser; CEU = Control electronics unit; PC = Personal Computer. The dashed lines mimic the gas lines. Solid lines are electrical connections.
Fig. 5
Fig. 5 a) Photo of the certified leak inserted in the test chamber. The gas-in and gas-out connectors are also visible. b) Leak flows measured as a function of differential pressure ΔP using the QEPAS sensors (■ symbols), compared with the calibration data (● symbols) provided for the certified leak.
Fig. 6
Fig. 6 a) Photo of the internal part of the investigated valves. The internal holes connected to the two valve chambers are marked by the red arrows. The sealing piston used to close the two holes is visible in the right side. b) Photo of valve 3. The entrances to the two valve chambers used to inject the test gases are marked by black arrows. c) Schematic of the valve operation principle. The sealing piston pushes over the two internal holes to isolate them. Defects of the valves were simulated by inserting a small wire (small red line in the picture) between the two holes, as marked by the black arrow.
Fig. 7
Fig. 7 Photo and schematic of the valve-seal test station and of the gas delivery system used to connect the two valve chambers. The red dashed circles mark the position of the gas delivery system in the test station.
Fig. 8
Fig. 8 QEPAS scans of the absorption line centered at 947.93 cm−1 measured for five different valve samples. The frequency of the voltage ramp used to scan the laser wavelength across the SF6 absorption line is 25 mHz. The related types of defects are reported in the legend.
Fig. 9
Fig. 9 Sensitivity ranges in mbar·l/s of the main leak detection methods.

Tables (1)

Tables Icon

Table 1 QEPAS peak signals and related leak flows calculated using Eq. (1) for a valve without defects (valve1) and four valves incorporating different defects. The corresponding SF6 contaminations (in ppm) in the N2 flow are also reported and were extracted using the calibration curve reported in Fig. 2(b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F L = F C ( Sb ) a C S F 6 ( Sb )

Metrics