Abstract

We investigate a new technique for quantum-compatible waveform shaping that extends the time lens method, and relies only on phase operations. Under realistic experimental conditions, we show that it is possible to both temporally compress and shape optical waveforms in the nanosecond to tens of picoseconds range, which is generally difficult to achieve using standard dispersive pulse-shaping techniques.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum optical arbitrary waveform manipulation and measurement in real time

Abijith S. Kowligy, Paritosh Manurkar, Neil V. Corzo, Vesselin G. Velev, Michael Silver, Ryan P. Scott, S. J. B. Yoo, Prem Kumar, Gregory S. Kanter, and Yu-Ping Huang
Opt. Express 22(23) 27942-27957 (2014)

Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel

Jason S. Pelc, Leo Yu, Kristiaan De Greve, Peter L. McMahon, Chandra M. Natarajan, Vahid Esfandyarpour, Sebastian Maier, Christian Schneider, Martin Kamp, Sven Höfling, Robert H. Hadfield, Alfred Forchel, Yoshihisa Yamamoto, and M. M. Fejer
Opt. Express 20(25) 27510-27519 (2012)

Optimal storage and retrieval of single-photon waveforms

Shuyu Zhou, Shanchao Zhang, Chang Liu, J. F. Chen, Jianming Wen, M. M. T. Loy, G. K. L. Wong, and Shengwang Du
Opt. Express 20(22) 24124-24131 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Kurasawa, and J. Vukovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  2. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref] [PubMed]
  3. M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65, 32–37 (2012).
    [Crossref]
  4. P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
    [Crossref]
  5. J. Fekete, D. Rielaender, and M. Cristiani, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunications networks,” Phys. Rev. Lett. 110, 220502 (2013).
    [Crossref]
  6. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
    [Crossref] [PubMed]
  7. C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
    [Crossref]
  8. G. S. Buller and R. J. Collins, “Single-photon generation and counting,” Meas. Sci. Technol. 21, 012002 (2010).
    [Crossref]
  9. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [Crossref] [PubMed]
  10. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
    [Crossref]
  11. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
    [Crossref]
  12. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
    [Crossref] [PubMed]
  13. I. Agha, S. Ates, M. Davanco, and K. Srinivasan, “A chip-scale, telecommunications-band frequency conversion interface for quantum emitters,” Opt. Express 21, 21628–21638 (2013).
    [Crossref] [PubMed]
  14. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
    [Crossref]
  15. I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 395677–5680 (2014).
    [Crossref] [PubMed]
  16. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  17. B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” arXiv:1504.06251v3 [quant-ph] (2015).
  18. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
    [Crossref]
  19. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
    [Crossref]
  20. Y. Zhu, J. Kim, and D.l J. Gauthier, “Aberration-corrected quantum temporal imaging system,” arXiv:1303.2100 [quant-ph] (2013).
  21. C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
    [Crossref]
  22. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
    [Crossref]
  23. J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
  24. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
    [Crossref] [PubMed]
  25. S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
    [Crossref] [PubMed]
  26. M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
    [Crossref] [PubMed]
  27. P. P. Rohde, T. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
    [Crossref]
  28. B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A, 113229–3234 (1994).
    [Crossref]
  29. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 1720605–20614 (2009).
    [Crossref] [PubMed]
  30. C. Matthiesen, A. N. Vamivakas, and M. Atature, “Subnatural linewidth single photons from a quantum dot,” Phys. Rev. Lett. 108, 093602 (2012).
    [Crossref] [PubMed]
  31. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

2016 (2)

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

2015 (1)

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

2014 (3)

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 395677–5680 (2014).
[Crossref] [PubMed]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

2013 (5)

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

I. Agha, S. Ates, M. Davanco, and K. Srinivasan, “A chip-scale, telecommunications-band frequency conversion interface for quantum emitters,” Opt. Express 21, 21628–21638 (2013).
[Crossref] [PubMed]

J. Fekete, D. Rielaender, and M. Cristiani, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunications networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

2012 (4)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

C. Matthiesen, A. N. Vamivakas, and M. Atature, “Subnatural linewidth single photons from a quantum dot,” Phys. Rev. Lett. 108, 093602 (2012).
[Crossref] [PubMed]

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65, 32–37 (2012).
[Crossref]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

2011 (1)

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

2010 (2)

G. S. Buller and R. J. Collins, “Single-photon generation and counting,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

2009 (4)

O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 1720605–20614 (2009).
[Crossref] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
[Crossref] [PubMed]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

J. L. O’Brien, A. Kurasawa, and J. Vukovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2008 (3)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

2005 (1)

P. P. Rohde, T. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

2004 (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

1994 (1)

B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A, 113229–3234 (1994).
[Crossref]

Agha, I.

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 395677–5680 (2014).
[Crossref] [PubMed]

I. Agha, S. Ates, M. Davanco, and K. Srinivasan, “A chip-scale, telecommunications-band frequency conversion interface for quantum emitters,” Opt. Express 21, 21628–21638 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Alibart, O.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Antón, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Atature, M.

C. Matthiesen, A. N. Vamivakas, and M. Atature, “Subnatural linewidth single photons from a quantum dot,” Phys. Rev. Lett. 108, 093602 (2012).
[Crossref] [PubMed]

Ates, S.

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 395677–5680 (2014).
[Crossref] [PubMed]

I. Agha, S. Ates, M. Davanco, and K. Srinivasan, “A chip-scale, telecommunications-band frequency conversion interface for quantum emitters,” Opt. Express 21, 21628–21638 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Badolato, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Bakkers, E. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Baldi, P.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Bleuse, J.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Brecht, B.

B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” arXiv:1504.06251v3 [quant-ph] (2015).

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Buller, G. S.

G. S. Buller and R. J. Collins, “Single-photon generation and counting,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

Busch, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Champion, T. F. M.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Chunnilall, C. J.

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

Claudon, J.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Collins, R. J.

G. S. Buller and R. J. Collins, “Single-photon generation and counting,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

Corney, J. F.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

Cristiani, M.

J. Fekete, D. Rielaender, and M. Cristiani, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunications networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Davanco, M.

De Santis, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Degiovanni, I. P.

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

Demory, J.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Donohue, J. M.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

Englund, D.

Faraon, A.

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Fedrizzi, A.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

Fekete, J.

J. Fekete, D. Rielaender, and M. Cristiani, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunications networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Fickler, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Foster, M. A.

Gaeta, A. L.

Gauthier, D.l J.

Y. Zhu, J. Kim, and D.l J. Gauthier, “Aberration-corrected quantum temporal imaging system,” arXiv:1303.2100 [quant-ph] (2013).

Gerard, J-M.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Giesz, V.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Gisin, N.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Gold, P.

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

Gómez, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Grange, T.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Gregersen, N.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Gulinatti, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Hofling, S.

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

Hornecker, G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Huber, M.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Kaczmarek, K. T.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Kamp, M.

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

Kielpinski, D.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

Kim, J.

Y. Zhu, J. Kim, and D.l J. Gauthier, “Aberration-corrected quantum temporal imaging system,” arXiv:1303.2100 [quant-ph] (2013).

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

Kolner, B. H.

B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A, 113229–3234 (1994).
[Crossref]

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Krenn, M.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Kuck, S.

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Kurasawa, A.

J. L. O’Brien, A. Kurasawa, and J. Vukovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Kuzucu, O.

Lalanne, P.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Lanco, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Lapkiewicz, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Lavoie, J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

Lemaitre, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Leverrier, A.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Lipson, M.

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Loredo, J. C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Lvovsky, A. L.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Matthiesen, C.

C. Matthiesen, A. N. Vamivakas, and M. Atature, “Subnatural linewidth single photons from a quantum dot,” Phys. Rev. Lett. 108, 093602 (2012).
[Crossref] [PubMed]

Michelberger, P. S.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Muller, I.

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

Nielsen, M. A.

P. P. Rohde, T. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

O’Brien, J. L.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

J. L. O’Brien, A. Kurasawa, and J. Vukovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Okawachi, Y.

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Pollick, A.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Pontius, P.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Portalupi, S. L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Rakher, M. T.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Ralph, T.

P. P. Rohde, T. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Ramelow, S.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Raymer, M.

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65, 32–37 (2012).
[Crossref]

Raymer, M. G.

B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” arXiv:1504.06251v3 [quant-ph] (2015).

Rech, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

Reddy, Dileep V.

B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” arXiv:1504.06251v3 [quant-ph] (2015).

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Reitzenstein, S.

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

Resch, K. J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

Rielaender, D.

J. Fekete, D. Rielaender, and M. Cristiani, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunications networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Rohde, P. P.

P. P. Rohde, T. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Sagnes, I.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Salem, R.

Sapienza, L.

Sauvan, C.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Schneider, C.

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

Scholl, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Senellart, P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Silberhorn, C.

B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” arXiv:1504.06251v3 [quant-ph] (2015).

Sinclair, A. G.

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

Singh Malik, N.

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Somaschi, N.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Sprague, M. R.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Srinivasan, K.

I. Agha, S. Ates, L. Sapienza, and K. Srinivasan, “Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters,” Opt. Lett. 395677–5680 (2014).
[Crossref] [PubMed]

I. Agha, S. Ates, M. Davanco, and K. Srinivasan, “A chip-scale, telecommunications-band frequency conversion interface for quantum emitters,” Opt. Express 21, 21628–21638 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65, 32–37 (2012).
[Crossref]

Sriram, S.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Stenger, V.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Tanzilli, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Toishi, M.

Toney, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Turner-Foster, A. C.

Vamivakas, A. N.

C. Matthiesen, A. N. Vamivakas, and M. Atature, “Subnatural linewidth single photons from a quantum dot,” Phys. Rev. Lett. 108, 093602 (2012).
[Crossref] [PubMed]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Vuckovic, J.

Vukovic, J.

J. L. O’Brien, A. Kurasawa, and J. Vukovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

White, A. G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

Wiseman, H. M.

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

Wright, L. G.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Zbinden, H.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Zeilinger, A.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Zhu, Y.

Y. Zhu, J. Kim, and D.l J. Gauthier, “Aberration-corrected quantum temporal imaging system,” arXiv:1303.2100 [quant-ph] (2013).

Zwiller, V.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 1221–6 (2016).
[Crossref]

J. Opt. Soc. Am. A, (1)

B. H. Kolner, “Generalization of the concepts of focal length and f-number to space and time,” J. Opt. Soc. Am. A, 113229–3234 (1994).
[Crossref]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and counting,” Meas. Sci. Technol. 21, 012002 (2010).
[Crossref]

Nat. Commun. (1)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3737 (2012).
[Crossref] [PubMed]

Nat. Photonics (6)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

J. L. O’Brien, A. Kurasawa, and J. Vukovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10340–345 (2016).
[Crossref]

J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J-M. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7363–366 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Nature (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref] [PubMed]

New J. Phys. (2)

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, and K. T. Kaczmarek, “Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6163 (2004).
[Crossref]

Opt. Eng. (1)

C. J. Chunnilall, I. P. Degiovanni, S. Kuck, I. Muller, and A. G. Sinclair, “Metrology of single-photon sources and detectors: a review,” Opt. Eng. 53081910 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

P. P. Rohde, T. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Phys. Rev. Lett. (5)

D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum waveform conversion,” Phys. Rev. Lett. 106, 130501 (2011).
[Crossref]

C. Matthiesen, A. N. Vamivakas, and M. Atature, “Subnatural linewidth single photons from a quantum dot,” Phys. Rev. Lett. 108, 093602 (2012).
[Crossref] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett. 109, 147405 (2012).
[Crossref] [PubMed]

J. Fekete, D. Rielaender, and M. Cristiani, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunications networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. L. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008).
[Crossref] [PubMed]

Phys. Today (1)

M. Raymer and K. Srinivasan, “Manipulating the color and shape of single photons,” Phys. Today 65, 32–37 (2012).
[Crossref]

Proc. Natl. Acad. Sci. Academy of Sciences USA (1)

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100 × 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. Academy of Sciences USA 1116243–6247 (2014).
[Crossref]

Sci. Rep. (1)

S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato, and K. Srinivasan, “Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation,” Sci. Rep. 3, 1397 (2013).
[Crossref] [PubMed]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Other (3)

B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: a complete framework for quantum information science,” arXiv:1504.06251v3 [quant-ph] (2015).

Y. Zhu, J. Kim, and D.l J. Gauthier, “Aberration-corrected quantum temporal imaging system,” arXiv:1303.2100 [quant-ph] (2013).

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Comparison between sinewave and quadratic functions, as a function of time (in sinewave period units). The two functions match nearly perfectly up to half the period’s length
Fig. 2
Fig. 2 a) Input pulse (green) and necessary temporal phase (blue). The temporal phase can be imparted directly via a phase modulator, or by mixing the input with a chirped pump via four-wave or three-wave mixing. b) Intermediate pulse spectrum and necessary spectral phase compensation. The spectral phase can be achieved by passing the intermediate pulse through a dispersion-compensating module
Fig. 3
Fig. 3 Input pulse (red) and output pulse (blue). The output pulse is temporally compressed and maintains the Gaussian nature of the input.
Fig. 4
Fig. 4 a) Input pulse (red) and necessary temporal phase (blue). b) Input pulse (red) and output pulse (blue). The output pulse is a symmetric Lorentzian of shorter duration.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Ψ 1 ( t ) = Ψ in ( t ) e i φ ( t ) = Ψ in ( t ) e i F t 2 .
Ψ ˜ 1 ( ω ) = 1 2 π Ψ in ( t ) e i F t 2 ( t ) e i ω t d t .
Ψ ˜ out ( ω ) = Ψ ˜ 1 ( ω ) e i G ω 2 ,
Ψ out ( t ) = 1 2 π Ψ ˜ 1 ( ω ) e i G ω 2 e i ω t d ω .
Ψ in = η e t 2 2 μ .
Ψ ˜ 1 ( ω ) = η μ 1 2 i μ 2 F e μ 2 ω 2 2 ( 1 2 i μ 2 F ) .
F = μ 2 σ 2 2 σ μ 2
Ψ ˜ 1 ( ω ) = η μ σ e i θ / 2 e i σ μ 2 σ 2 ω 2 / 2 e σ 2 ω 2 / 2 ,
G = i σ μ 2 σ 2 / 2
Ψ ˜ out ( ω ) = η μ σ e i θ / 2 e σ 2 ω 2 / 2 ,
Ψ out ( t ) = η μ σ e i θ / 2 e t 2 2 σ 2 .
| Ψ in ( t ) | 2 d t = | Ψ out ( t ) | 2 d t = | η | 2 π μ .
Ψ in ( t ) = { 0 t < 0 η e t / τ t > 0 .
Ψ ˜ 1 ( ω ) = i η erfc ( i ( i ω τ ) 2 τ F ) e ω 2 τ F + i 4 τ 2 F i ω 2 4 F 2 2 F .
G = 1 4 F ,
Ψ ˜ out ( ω ) = i η erfc ( i ( i ω τ ) 2 τ F ) e ω 2 τ F + i 4 F τ 2 2 2 F ,
Ψ ˜ out ( t ) = i η τ 2 π 1 / 2 F τ i t 1 2 F τ e i t 2 F i 4 τ 2 F .
| Ψ in ( t ) | 2 d t = | Ψ out ( t ) | 2 d t = | η | 2 τ 2 .

Metrics