Abstract

We report detailed characterization of surface plasmon-polariton guiding along 1-, 1.5- and 2-μm-wide channels in high-density (~75 μm−2) random arrays of gold 70-nm-high and 50-nm-wide nanoparticles fabricated on a 70-nm-thin gold film supported by a 170-μm-thick silica substrate. The mode propagation losses, effective index dispersion, and scattering parameters are characterized using leakage-radiation microscopy, in direct and Fourier planes, in the wavelength range of 740–840 nm. It is found that the mode supported by 2-μm-wide channels propagates over > 10 μm in straight waveguides, with the corresponding S-bends and Y-splitters functioning reasonably well. The results show that the SPP waves can efficiently be guided by narrow scattering-free channels cut through randomly corrugated surface regions. The potential of this waveguiding mechanism is yet to be fully explored by tuning the scattering mean-free path and localization length via the density and size of random nanoparticles. Nevertheless, the results obtained are encouraging and promising diverse applications of these waveguide components in plasmonic circuitry.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic directional couplers using channel waveguides in random arrays of metal nanoparticles

C. E. Garcia-Ortiz, V. Coello, E. Pisano, Y. Chen, and S. I. Bozhevolnyi
Opt. Express 27(16) 22753-22763 (2019)

Directional coupling in channel plasmon-polariton waveguides

Vladimir A. Zenin, Valentyn S. Volkov, Zhanghua Han, Sergey I. Bozhevolnyi, Eloïse Devaux, and Thomas W. Ebbesen
Opt. Express 20(6) 6124-6134 (2012)

Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface

Sergey I. Bozhevolnyi, Valentyn S. Volkov, Kristjan Leosson, and John Erland
Opt. Lett. 26(10) 734-736 (2001)

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
    [Crossref] [PubMed]
  3. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 2, e66 (2013).
  4. A. Krasavin and A. Zayats, “Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Opt. Mater. 3(12), 1662–1690 (2015).
    [Crossref]
  5. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [Crossref]
  6. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
    [Crossref] [PubMed]
  7. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
    [Crossref]
  8. Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
    [Crossref]
  9. R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  10. S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
    [Crossref]
  11. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
    [Crossref] [PubMed]
  12. V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
    [Crossref]
  13. S. I. Bozhevolnyi, “Localization phenomena in elastic surface plasmon polariton scattering,” Phys. Rev. B 54(11), 8177 (1996).
    [Crossref]
  14. V. Coello, “Surface plasmon polariton localization,” Surf. Rev. Lett. 15(6), 867–880 (2008).
    [Crossref]
  15. X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
    [Crossref]
  16. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
    [Crossref] [PubMed]
  17. S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
    [Crossref] [PubMed]
  18. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [Crossref] [PubMed]
  19. S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
    [Crossref]

2015 (1)

A. Krasavin and A. Zayats, “Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Opt. Mater. 3(12), 1662–1690 (2015).
[Crossref]

2014 (2)

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

2013 (4)

V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
[Crossref]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 2, e66 (2013).

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

2012 (2)

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

2010 (1)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

2008 (2)

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

V. Coello, “Surface plasmon polariton localization,” Surf. Rev. Lett. 15(6), 867–880 (2008).
[Crossref]

2002 (2)

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
[Crossref] [PubMed]

2001 (2)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

1998 (1)

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

1996 (1)

S. I. Bozhevolnyi, “Localization phenomena in elastic surface plasmon polariton scattering,” Phys. Rev. B 54(11), 8177 (1996).
[Crossref]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Boltasseva, A.

S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface plasmon polariton scattering,” Phys. Rev. B 54(11), 8177 (1996).
[Crossref]

Cao, H.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Chan, H. P.

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Chen, X.

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

Coello, V.

V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[Crossref] [PubMed]

V. Coello, “Surface plasmon polariton localization,” Surf. Rev. Lett. 15(6), 867–880 (2008).
[Crossref]

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

Cortes, R.

V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
[Crossref]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Elizondo, N.

V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
[Crossref]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 2, e66 (2013).

Farrell, G.

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Garcia, C.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

Garcia-Ortiz, C.

V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
[Crossref]

Genov, D. A.

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[Crossref] [PubMed]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

Krasavin, A.

A. Krasavin and A. Zayats, “Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Opt. Mater. 3(12), 1662–1690 (2015).
[Crossref]

Leosson, K.

S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

Liew, S. F.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Ma, Y.

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Malomed, B.

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

Mosk, A. P.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Oulton, R.

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Panoiu, N.

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

Pile, D.

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Popoff, S. M.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Radko, I. P.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20(7), 7771–7776 (2012).
[Crossref] [PubMed]

Semenova, Y.

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Shi, X.

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

Skovgaard, P. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

Sorger, V.

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 2, e66 (2013).

Volkov, V.

S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

Vos, W. L.

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

Wu, Q.

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Ye, F.

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

Zayats, A.

A. Krasavin and A. Zayats, “Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Opt. Mater. 3(12), 1662–1690 (2015).
[Crossref]

Zhang, H.

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Zhang, X.

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Adv. Opt. Mater. (1)

A. Krasavin and A. Zayats, “Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides,” Adv. Opt. Mater. 3(12), 1662–1690 (2015).
[Crossref]

Appl. Phys. B (1)

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107(2), 401–407 (2012).
[Crossref]

J. Micr. (1)

S. I. Bozhevolnyi, V. Volkov, K. Leosson, and A. Boltasseva, “Surface plasmon waveguiding in random nanostructures,” J. Micr. 209(3), 209–213 (2002).
[Crossref] [PubMed]

Light Sci. Appl. (1)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 2, e66 (2013).

Nano (1)

V. Coello, R. Cortes, C. Garcia-Ortiz, and N. Elizondo, “Surface plasmon excitation and manipulation in disordered two dimensional nanoparticle arrays,” Nano 8(4), 44–55 (2013).
[Crossref]

Nat. Photonics (2)

R. Oulton, V. Sorger, D. A. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. B (4)

S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballistic-like transport,” Phys. Rev. B 89(22), 224202 (2014).
[Crossref]

S. I. Bozhevolnyi and V. Coello, “Elastic scattering of surface plasmon polaritons modeling and experiment,” Phys. Rev. B 58(16), 10899–10910 (1998).
[Crossref]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface plasmon polariton scattering,” Phys. Rev. B 54(11), 8177 (1996).
[Crossref]

X. Shi, X. Chen, B. Malomed, N. Panoiu, and F. Ye, “Anderson localization at the subwavelength scale and loss compensation for surface-plasmon polaritons in disordered arrays of metallic nanowires,” Phys. Rev. B 89(19), 195428 (2014).
[Crossref]

Phys. Rev. Lett. (3)

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001).
[Crossref] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[Crossref] [PubMed]

Plasmonics (1)

Y. Ma, G. Farrell, Y. Semenova, H. P. Chan, H. Zhang, and Q. Wu, “Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode,” Plasmonics 8(2), 1259–1263 (2013).
[Crossref]

Rep. Prog. Phys. (1)

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

Surf. Rev. Lett. (1)

V. Coello, “Surface plasmon polariton localization,” Surf. Rev. Lett. 15(6), 867–880 (2008).
[Crossref]

Other (1)

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic design of the straight RN-PCWs. (b) Scanning electron microscopy (SEM) image showing the fabricated scatterers inside the random structure. SEM images of (c) straight channel waveguides, (d) waveguides with S-bends, and (e) Y-splitting channel waveguides of different widths of 1, 1.5 and 2 µm, respectively.
Fig. 2
Fig. 2 (a) Schematic showing the SPP beam excited from the ridge impinging directly into the random structure. (b) SEM image of the ridge used for coupling (vertical line in the left) and the random structure (right). The dotted circle represents the position at which the laser is focused to launch the SPPs. (c)–(f) LRM images of the intensity distribution of the SPP entering the corrugated area at a wavelength of (c) 740, (d) 770, (e) 800, and (f) 830 nm. The excitation spot and the left propagating beam are filtered out with spatial filters. The dotted vertical line depicts the position of the excitation ridge, and the dotted rectangle is the area containing the randomly placed nanoparticles.
Fig. 3
Fig. 3 (a) Averaged intensity profiles along the propagation direction of the SPP beam entering the corrugated area for wavelengths in the range 740–840 nm. (b) Localization lengths obtained from the exponential fit and the two-dimensional scattering model. (c) Scattering mean-free path and (d) scattering cross sections.
Fig. 4
Fig. 4 (a) LRM image of the intensity distribution of the RN-PCW mode propagating from left to right, at an excitation wavelength of 740 nm. The dotted lines represent the boundary of the random structure and the ridge used for excitation. The excitation spot and the left propagating beam are blocked to ease visualization. (b) Averaged intensity profile of the RN-PCW mode along the propagation direction x (black dotted arrow in (a)). (c) Propagation length for the three waveguide widths in the wavelength range 740–840 nm.
Fig. 5
Fig. 5 (a) Fourier plane schematic. The inner gray circle corresponds to the numerical aperture (NA) of the focusing objective (0.40), while the outermost corresponds to the NA of the collection objective (1.25). The two lateral crescents correspond to the free-propagating SPP excited in the ridge. The clear vertical line to the right is a signature of a guided mode. (b) Experimental LRM image showing a section of the Fourier plane, corresponding to the area contained inside the dashed rectangle in (a). (c) Filtered image of (b).
Fig. 6
Fig. 6 Effective refractive index as a function of wavelength of the RN-PCW mode for the three different waveguides. Linear fits are included as a guide. The green stars and line correspond to the effective index neff of free SPP wave at the gold-air interface.
Fig. 7
Fig. 7 (a) LRM image of the intensity distribution of three waveguides of different widths with S-bends at an excitation wavelength of 750 nm. (b) Transmission and (c) bend loss of the S-bend of the three structures in the wavelength range of 740–840 nm.
Fig. 8
Fig. 8 (a) LRM image of the intensity distribution of three waveguides of different widths with Y-splitters at an excitation wavelength of 770 nm. (b) Transmission and (c) Y-splitter losses of the three structures in the wavelength range of 740–840 nm.
Fig. 9
Fig. 9 Averaged intensity cross-sections along the transverse direction of the Y-splitter through points B1 and B2 for the three different channel widths at an excitation wavelength of (a) 740 nm, (b) 800 nm, and (c) 840 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d(x)= d 0 2π [ 2πx Λ sin( 2πx Λ ) ],

Metrics