Abstract

We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts

Kai Wei, Tian Zhao, Xiujie Fang, Yueyang Zhai, Hairong Li, and Wei Quan
Opt. Express 27(11) 16169-16183 (2019)

Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method

Han Yao, Yang Li, Danyue Ma, Jiashu Cai, Junpeng Zhao, and Ming Ding
Opt. Express 26(22) 28682-28692 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
    [Crossref]
  2. A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
    [Crossref] [PubMed]
  3. N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
    [Crossref]
  4. J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors J. 11(9), 1749–1758 (2011).
    [Crossref]
  5. S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
    [Crossref]
  6. I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104(2), 023504 (2014).
    [Crossref]
  7. A. Wickenbrock, F. Tricot, and F. Renzoni, “Magnetic induction measurements using an all-optical 87Rb atomic magnetometer,” Appl. Phys. Lett. 103(24), 243503 (2013).
    [Crossref]
  8. I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103(4), 043703 (2013).
    [Crossref]
  9. M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
    [Crossref]
  10. E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
    [Crossref]
  11. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
    [Crossref]
  12. W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
    [Crossref]
  13. S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
    [Crossref]
  14. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
    [Crossref]
  15. A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
    [Crossref]
  16. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton Univ., Princeton, NJ, USA, (2008).
  17. I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
    [Crossref] [PubMed]
  18. N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spin-exchange cross sections for 133Cs,87Rb,85Rb,39K, and 23Na,” Phys. Rev. 184(1), 102–118 (1969).
    [Crossref]
  19. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
    [Crossref]

2015 (1)

S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
[Crossref]

2014 (3)

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104(2), 023504 (2014).
[Crossref]

E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
[Crossref]

A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
[Crossref] [PubMed]

2013 (3)

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

A. Wickenbrock, F. Tricot, and F. Renzoni, “Magnetic induction measurements using an all-optical 87Rb atomic magnetometer,” Appl. Phys. Lett. 103(24), 243503 (2013).
[Crossref]

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103(4), 043703 (2013).
[Crossref]

2012 (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

2011 (1)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors J. 11(9), 1749–1758 (2011).
[Crossref]

2005 (1)

I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
[Crossref] [PubMed]

2001 (1)

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

1998 (3)

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
[Crossref]

1984 (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

1977 (1)

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

1972 (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
[Crossref]

1969 (1)

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spin-exchange cross sections for 133Cs,87Rb,85Rb,39K, and 23Na,” Phys. Rev. 184(1), 102–118 (1969).
[Crossref]

Alcock, C. B.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Anderson, L. W.

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

Appelt, S.

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

Baranga, A. B.

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

Behbood, N.

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Boshier, M. G.

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104(2), 023504 (2014).
[Crossref]

Budker, D.

E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
[Crossref]

Chen, X. Y.

S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
[Crossref]

Ciurana, F. M.

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Colangelo, G.

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

DeJoseph, C. A.

M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
[Crossref]

Donley, E. A.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors J. 11(9), 1749–1758 (2011).
[Crossref]

Dow, A.

Erickson, C. J.

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

Ganguly, B. N.

M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
[Crossref]

Happer, W.

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
[Crossref]

Horrigan, M. K.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Itkin, V. P.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Ito, Y.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Jurgilas, S.

Kadlecek, S.

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

Kamada, K.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Karaulanov, T.

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104(2), 023504 (2014).
[Crossref]

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103(4), 043703 (2013).
[Crossref]

Kitching, J.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors J. 11(9), 1749–1758 (2011).
[Crossref]

Knappe, S.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors J. 11(9), 1749–1758 (2011).
[Crossref]

Kobayashi, T.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Marmugi, L.

Millard, M. W.

M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
[Crossref]

Mitchell, M. W.

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Napolitano, M.

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Patton, B.

E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
[Crossref]

Quan, W.

S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
[Crossref]

Renzoni, F.

A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
[Crossref] [PubMed]

A. Wickenbrock, F. Tricot, and F. Renzoni, “Magnetic induction measurements using an all-optical 87Rb atomic magnetometer,” Appl. Phys. Lett. 103(24), 243503 (2013).
[Crossref]

Ressler, N. W.

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spin-exchange cross sections for 133Cs,87Rb,85Rb,39K, and 23Na,” Phys. Rev. 184(1), 102–118 (1969).
[Crossref]

Romalis, M. V.

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

Romalis, M.V.

I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
[Crossref] [PubMed]

Sands, R. H.

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spin-exchange cross sections for 133Cs,87Rb,85Rb,39K, and 23Na,” Phys. Rev. 184(1), 102–118 (1969).
[Crossref]

Sauer, K. L.

I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
[Crossref] [PubMed]

Savukov, I.

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104(2), 023504 (2014).
[Crossref]

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103(4), 043703 (2013).
[Crossref]

Savukov, I. M.

I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
[Crossref] [PubMed]

Seltzer, S. J.

I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
[Crossref] [PubMed]

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton Univ., Princeton, NJ, USA, (2008).

Sewell, R. J.

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

Stark, T. E.

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spin-exchange cross sections for 133Cs,87Rb,85Rb,39K, and 23Na,” Phys. Rev. 184(1), 102–118 (1969).
[Crossref]

Tam, A. C.

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

Tricot, F.

A. Wickenbrock, F. Tricot, and F. Renzoni, “Magnetic induction measurements using an all-optical 87Rb atomic magnetometer,” Appl. Phys. Lett. 103(24), 243503 (2013).
[Crossref]

Vliegen, E.

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

Walker, T. G.

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

Wickenbrock, A.

A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
[Crossref] [PubMed]

E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
[Crossref]

A. Wickenbrock, F. Tricot, and F. Renzoni, “Magnetic induction measurements using an all-optical 87Rb atomic magnetometer,” Appl. Phys. Lett. 103(24), 243503 (2013).
[Crossref]

Yaney, P. P.

M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
[Crossref]

Young, A. R.

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

Zhang, H.

S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
[Crossref]

Zhivun, E.

E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
[Crossref]

Zou, S.

S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
[Crossref]

AIP Adv. (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography,” AIP Adv. 2(3), 032127 (2012).
[Crossref]

Appl. Phys. Lett. (5)

I. Savukov, T. Karaulanov, and M. G. Boshier, “Ultra-sensitive high-density Rb-87 radio-frequency magnetometer,” Appl. Phys. Lett. 104(2), 023504 (2014).
[Crossref]

A. Wickenbrock, F. Tricot, and F. Renzoni, “Magnetic induction measurements using an all-optical 87Rb atomic magnetometer,” Appl. Phys. Lett. 103(24), 243503 (2013).
[Crossref]

I. Savukov and T. Karaulanov, “Magnetic-resonance imaging of the human brain with an atomic magnetometer,” Appl. Phys. Lett. 103(4), 043703 (2013).
[Crossref]

N. Behbood, F. M. Ciurana, G. Colangelo, M. Napolitano, M. W. Mitchell, and R. J. Sewell, “Real-time vector field tracking with a cold-atom magnetometer,” Appl. Phys. Lett. 102(17), 173504 (2013).
[Crossref]

E. Zhivun, A. Wickenbrock, B. Patton, and D. Budker, “Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields,” Appl. Phys. Lett. 105(19), 192406 (2014).
[Crossref]

IEEE Sensors J. (1)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors - a review,” IEEE Sensors J. 11(9), 1749–1758 (2011).
[Crossref]

J. Korean Phys. Soc. (1)

S. Zou, H. Zhang, X. Y. Chen, and W. Quan, “Magnetization produced by spin-polarized xenon-129 gas detected by using all-optical atomic magnetometer,” J. Korean Phys. Soc. 66(6), 887–893 (2015).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. A (1)

E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, “Faraday rotation density measurements of optically thick alkali metal vapors,” Nucl. Instrum. Methods Phys. Res. Sect. A 460(2001), 444–450 (2001).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

N. W. Ressler, R. H. Sands, and T. E. Stark, “Measurement of spin-exchange cross sections for 133Cs,87Rb,85Rb,39K, and 23Na,” Phys. Rev. 184(1), 102–118 (1969).
[Crossref]

Phys. Rev. A (3)

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58(3), 2282–2294 (1998).
[Crossref]

W. Happer and A. C. Tam, “Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors,” Phys. Rev. A 16(5), 1877–1891 (1977).
[Crossref]

S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58(2), 1412–1439 (1998).
[Crossref]

Phys. Rev. Lett. (1)

I. M. Savukov, S. J. Seltzer, M.V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95(6), 063004 (2005).
[Crossref] [PubMed]

Plasma Sources Sci. Technol. (1)

M. W. Millard, P. P. Yaney, B. N. Ganguly, and C. A. DeJoseph, “Diode laser absorption measurements of metastable helium in glow discharges,” Plasma Sources Sci. Technol. 7(3), 389–394 (1998).
[Crossref]

Rev. Mod. Phys. (1)

W. Happer, “Optical pumping,” Rev. Mod. Phys. 44(2), 169–249 (1972).
[Crossref]

Scan. Metall. Quart. (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements: 298–2500K,” Scan. Metall. Quart. 23(3), 309–313 (1984).
[Crossref]

Other (1)

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation, Princeton Univ., Princeton, NJ, USA, (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Magnetic resonance linewidth Δυ estimated from Eq. (2) for the all-optical potassium atomic magnetometer at different temperatures.
Fig. 2
Fig. 2 Theoretical predictions of the atomic density numbers determining by the saturated vapor pressure and the magnetic resonance linewidth method presented in this paper, respectively. Solid blue line is the atomic density number obtained by saturated vapor pressure and red crosses are that obtained by the method presented in this paper.
Fig. 3
Fig. 3 Schematic of the experimental device. The pump and probe beams propagate along the z and x directions, respectively.
Fig. 4
Fig. 4 Experimental results of the magnetic resonance linewidth measurement in a 2700 nT magnetic field. (a) Fitting results of the magnetic resonance linewidth at the different temperatures. (b) Comparison between the experimental results and the theoretical predications.

Tables (1)

Tables Icon

Table 1 Experimental results of the atomic density number.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d ρ d t = [ H , ρ ] i h ¯ + R SE [ φ ( 1 + 4 S S ) ρ ] + R rel [ φ ρ ] + R OP [ φ ( 1 + 2 s S ) ρ ] + D 2 ρ ,
Δ υ B = 1 π { [ ( 2 I + 1 ) 2 + 2 ] R SE 3 ( 2 I + 1 ) 2 g S 2 μ B 2 B 2 h ¯ 2 ( 2 I + 1 ) 2 2 g S μ B B R SE i h ¯ ( 2 I + 1 ) 2 + [ ( 2 I + 1 ) 2 + 2 ] 2 R SE 2 9 ( 2 I + 1 ) 4 i γ e q | B | } ,
Δ υ SE = 1 π T 2 = R OP 4 π + R SE R SD R OP π G ( ω 0 , R SE ) ,
G ( ω 0 , R SE ) = Re [ R SE + 4 i ω 0 2 / π υ HF 5 R SE + 8 i ω 0 2 / π υ HF ] ,
Δ υ SE = R SE 8 π ,
R SE = n σ SE 8 K B T π M ,
n = 8 π Δ υ SE σ SE 8 π M K B T ,
n = 1 T 10 21.866 + A B / T ,
f ( ν ) = a ( ν ν 0 ) 2 + ( Δ υ SE / 2 ) 2 + c ,

Metrics