Abstract

We present a complete hyperentangled Bell state analysis protocol for two-photon four-qubit states that are simultaneously entangled in the polarization and time-bin degrees of freedom. The 16 hyperentangled states can be unambiguously distinguished via two steps. In the first step, the polarization entangled state is distinguished deterministically and nondestructively with the help of the cross-Kerr nonlinearity. Then, in the second step, the time-bin state is analyzed with the aid of the polarization entanglement. We also discuss the applications of our protocol for quantum information processing. Compared with hyperentanglement in polarization and spatial-mode degrees of freedom, the polarization and time-bin hyperentangled states provide savings in quantum resources since there is no requirement for two spatial modes for each photon. This is the first complete hyperentangled Bell state analysis scheme for polarization and time-bin hyperentangled states, and it can provide new avenues for high-capacity, long-distance quantum communication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities

Bao-Cang Ren, Hai-Rui Wei, Ming Hua, Tao Li, and Fu-Guo Deng
Opt. Express 20(22) 24664-24677 (2012)

Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement

Guan-Yu Wang, Bao-Cang Ren, Fu-Guo Deng, and Gui-Lu Long
Opt. Express 27(6) 8994-9003 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on BellâǍŹs theorem,” Phys. Rev. Lett. 67, 661 (1991).
    [Crossref] [PubMed]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
    [Crossref] [PubMed]
  3. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
    [Crossref] [PubMed]
  4. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
    [Crossref]
  5. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
    [Crossref] [PubMed]
  6. T. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator,” Sci. Bull. 61, 163 (2016)
    [Crossref]
  7. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
    [Crossref]
  8. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162 (1999).
    [Crossref]
  9. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
    [Crossref]
  10. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
    [Crossref]
  11. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
    [Crossref]
  12. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
    [Crossref]
  13. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).
  14. D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
    [Crossref]
  15. R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull.96, (2015).
  16. P. G. Kwiat, “Hyper-entangled states”, J. Mod. Opt. 44, 2173 (1997).
    [Crossref]
  17. T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
    [Crossref]
  18. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [Crossref]
  19. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
    [Crossref]
  20. S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).
  21. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623 (1998).
    [Crossref]
  22. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
    [Crossref]
  23. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
    [Crossref] [PubMed]
  24. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
    [Crossref]
  25. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
    [Crossref]
  26. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
    [Crossref]
  27. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
    [Crossref]
  28. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
    [Crossref]
  29. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
    [Crossref]
  30. B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
    [Crossref] [PubMed]
  31. B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
    [Crossref]
  32. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
    [Crossref]
  33. W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
    [Crossref]
  34. F. F. Du and F. G. Deng, “Heralded entanglement concentration for photon systems with linear-optical elements,” Sci. China Phys. Mech. Astron. 58, 40303 (2015).
    [Crossref]
  35. C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
    [Crossref]
  36. B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
    [Crossref]
  37. B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
    [Crossref]
  38. B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities,” Opt. Express 22, 6547 (2014).
    [Crossref] [PubMed]
  39. T. J. Wang, C. Cao, and C. Wang, “Linear-optical implementation of hyperdistillation from photon loss,” Phys. Rev. A 89, 052303 (2014).
    [Crossref]
  40. B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
    [Crossref]
  41. X. H. Li and S. Ghose, “Hyperconcentration for multipartite entanglement via linear optics,” Laser Phys. Lett. 11, 125201 (2014).
    [Crossref]
  42. X. H. Li and S. Ghose, “Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity,” Opt. Express 23, 3550 (2014).
    [Crossref]
  43. X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
    [Crossref]
  44. T. J. Wang, L. L. Liu, R. Zhang, C. Cao, and C. Wang, “One-step hyperentanglement purification and hyperdistillation with linear optics,” Opt. Express 23, 9284 (2015).
    [Crossref] [PubMed]
  45. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295 (1999).
    [Crossref]
  46. J. Calsamiglia, “Generalized measurements by linear elements”, Phys. Rev. A 65, 030301 (2002).
    [Crossref]
  47. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
    [Crossref] [PubMed]
  48. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis”, Phys. Rev. A 75, 060305 (2007).
    [Crossref]
  49. N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
    [Crossref]
  50. F. Ewert and P. van Loock, “3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
    [Crossref] [PubMed]
  51. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
    [Crossref]
  52. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
    [Crossref]
  53. Y. Xia, Q. Q. Chen, J. Song, and H. S. Song, “Effcient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1029-1037 (2012).
    [Crossref]
  54. X. H. Li and S. Ghose, “Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity,” Phys. Rev. A 93, 022302 (2016).
    [Crossref]
  55. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664 (2012).
    [Crossref] [PubMed]
  56. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
    [Crossref]
  57. Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
    [Crossref]
  58. Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
    [Crossref] [PubMed]
  59. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [Crossref]
  60. D. Kalamidas, “Single-photon quantum error rejection and correction with linear optics,” Phys. Lett. A 343, 331 (2005).
    [Crossref]
  61. P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
    [Crossref]
  62. J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
    [Crossref]
  63. Z. W. Wu and L. X. Chen, “Electro-optic analyzer of angular momentum hyperentanglement,” Sci. Rep. 6, 21856 (2016)
    [Crossref] [PubMed]
  64. Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
    [Crossref]
  65. Y. B. Sheng and L. Zhou, “Deterministic entanglement distillation for secure double-server blind quantum computation,” Sci. Rep. 5, 7815 (2015).
    [Crossref] [PubMed]
  66. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
    [Crossref]
  67. C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
    [Crossref]
  68. B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
    [Crossref]
  69. A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011).
    [Crossref] [PubMed]
  70. C. Zhu and G. Huang, “Controlled entangled photons and polarization phase gates in coupled quantum-well structures,” Opt. Express 19, 23364 (2011).
    [Crossref] [PubMed]
  71. I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
    [Crossref] [PubMed]
  72. S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
    [Crossref] [PubMed]

2016 (4)

T. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator,” Sci. Bull. 61, 163 (2016)
[Crossref]

X. H. Li and S. Ghose, “Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity,” Phys. Rev. A 93, 022302 (2016).
[Crossref]

Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
[Crossref] [PubMed]

Z. W. Wu and L. X. Chen, “Electro-optic analyzer of angular momentum hyperentanglement,” Sci. Rep. 6, 21856 (2016)
[Crossref] [PubMed]

2015 (11)

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Y. B. Sheng and L. Zhou, “Deterministic entanglement distillation for secure double-server blind quantum computation,” Sci. Rep. 5, 7815 (2015).
[Crossref] [PubMed]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

T. J. Wang, L. L. Liu, R. Zhang, C. Cao, and C. Wang, “One-step hyperentanglement purification and hyperdistillation with linear optics,” Opt. Express 23, 9284 (2015).
[Crossref] [PubMed]

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
[Crossref]

F. F. Du and F. G. Deng, “Heralded entanglement concentration for photon systems with linear-optical elements,” Sci. China Phys. Mech. Astron. 58, 40303 (2015).
[Crossref]

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

2014 (8)

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities,” Opt. Express 22, 6547 (2014).
[Crossref] [PubMed]

T. J. Wang, C. Cao, and C. Wang, “Linear-optical implementation of hyperdistillation from photon loss,” Phys. Rev. A 89, 052303 (2014).
[Crossref]

X. H. Li and S. Ghose, “Hyperconcentration for multipartite entanglement via linear optics,” Laser Phys. Lett. 11, 125201 (2014).
[Crossref]

X. H. Li and S. Ghose, “Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity,” Opt. Express 23, 3550 (2014).
[Crossref]

F. Ewert and P. van Loock, “3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
[Crossref] [PubMed]

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

2013 (4)

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

2012 (4)

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Y. Xia, Q. Q. Chen, J. Song, and H. S. Song, “Effcient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1029-1037 (2012).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664 (2012).
[Crossref] [PubMed]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

2011 (5)

N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[Crossref]

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[Crossref]

A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011).
[Crossref] [PubMed]

C. Zhu and G. Huang, “Controlled entangled photons and polarization phase gates in coupled quantum-well structures,” Opt. Express 19, 23364 (2011).
[Crossref] [PubMed]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[Crossref]

2010 (5)

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[Crossref]

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[Crossref]

2009 (1)

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

2008 (1)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

2007 (2)

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis”, Phys. Rev. A 75, 060305 (2007).
[Crossref]

2006 (2)

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).

2005 (5)

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

D. Kalamidas, “Single-photon quantum error rejection and correction with linear optics,” Phys. Lett. A 343, 331 (2005).
[Crossref]

2004 (2)

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[Crossref]

2003 (3)

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[Crossref]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
[Crossref]

2002 (3)

J. Calsamiglia, “Generalized measurements by linear elements”, Phys. Rev. A 65, 030301 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[Crossref]

1999 (3)

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162 (1999).
[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295 (1999).
[Crossref]

1998 (1)

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623 (1998).
[Crossref]

1997 (1)

P. G. Kwiat, “Hyper-entangled states”, J. Mod. Opt. 44, 2173 (1997).
[Crossref]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

1992 (2)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on BellâǍŹs theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

Almeida, M. P.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).

Andersen, U. L.

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

Baragiola, B. Q.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

Barbieri, M.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis”, Phys. Rev. A 75, 060305 (2007).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Barrett, S. D.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

Beausoleil, R. G.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[Crossref] [PubMed]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Bienfang, J. C.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

Brink, D.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Calsamiglia, J.

J. Calsamiglia, “Generalized measurements by linear elements”, Phys. Rev. A 65, 030301 (2002).
[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295 (1999).
[Crossref]

Cao, C.

T. J. Wang, L. L. Liu, R. Zhang, C. Cao, and C. Wang, “One-step hyperentanglement purification and hyperdistillation with linear optics,” Opt. Express 23, 9284 (2015).
[Crossref] [PubMed]

T. J. Wang, C. Cao, and C. Wang, “Linear-optical implementation of hyperdistillation from photon loss,” Phys. Rev. A 89, 052303 (2014).
[Crossref]

Cao, D. Y.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

Ceccarelli, R.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

Chen, L. X.

Z. W. Wu and L. X. Chen, “Electro-optic analyzer of angular momentum hyperentanglement,” Sci. Rep. 6, 21856 (2016)
[Crossref] [PubMed]

Chen, Q. Q.

Chesi, S.

W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
[Crossref]

Combes, J.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

De Martini, F.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

Deng, F. G.

F. F. Du and F. G. Deng, “Heralded entanglement concentration for photon systems with linear-optical elements,” Sci. China Phys. Mech. Astron. 58, 40303 (2015).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664 (2012).
[Crossref] [PubMed]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[Crossref]

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[Crossref]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[Crossref]

Deng, F.G.

Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
[Crossref] [PubMed]

Du, F. F.

F. F. Du and F. G. Deng, “Heralded entanglement concentration for photon systems with linear-optical elements,” Sci. China Phys. Mech. Astron. 58, 40303 (2015).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on BellâǍŹs theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

Ewert, F.

F. Ewert and P. van Loock, “3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
[Crossref] [PubMed]

Fan, B.

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

Feizpour, A.

A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011).
[Crossref] [PubMed]

Feng, L.

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[Crossref]

Ferrari, S.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Gaebler, C. P. E.

N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[Crossref]

Ghose, S.

X. H. Li and S. Ghose, “Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity,” Phys. Rev. A 93, 022302 (2016).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

X. H. Li and S. Ghose, “Hyperconcentration for multipartite entanglement via linear optics,” Laser Phys. Lett. 11, 125201 (2014).
[Crossref]

X. H. Li and S. Ghose, “Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity,” Opt. Express 23, 3550 (2014).
[Crossref]

Gong, Y. X.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Gräfe, M.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull.96, (2015).

Guo, G. C.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

He, B.

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[Crossref]

Heilmann, R.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull.96, (2015).

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Hofmann, H. F.

H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
[Crossref]

Hoi, I. C.

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

Hu, J. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Hua, M.

Huang, G.

Huang, Y. F.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Ilin, K.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Imoto, N.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162 (1999).
[Crossref]

Itzler, M. A.

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

Jia, S. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Jing, M. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Johansson, G.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Kahl, O.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Kalamidas, D.

D. Kalamidas, “Single-photon quantum error rejection and correction with linear optics,” Phys. Lett. A 343, 331 (2005).
[Crossref]

Karlsson, A.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162 (1999).
[Crossref]

Koashi, M.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162 (1999).
[Crossref]

Kockum, A. F.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

Kojima, K.

H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
[Crossref]

Kok, P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis”, Phys. Rev. A 75, 060305 (2007).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623 (1998).
[Crossref]

P. G. Kwiat, “Hyper-entangled states”, J. Mod. Opt. 44, 2173 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Leuchs, G.

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

Lewes-Malandrakis, G.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Li, C. F.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

Li, T.

T. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator,” Sci. Bull. 61, 163 (2016)
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664 (2012).
[Crossref] [PubMed]

Li, X. H.

X. H. Li and S. Ghose, “Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity,” Phys. Rev. A 93, 022302 (2016).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

X. H. Li and S. Ghose, “Hyperconcentration for multipartite entanglement via linear optics,” Laser Phys. Lett. 11, 125201 (2014).
[Crossref]

X. H. Li and S. Ghose, “Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity,” Opt. Express 23, 3550 (2014).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[Crossref]

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Li, Z.

W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
[Crossref]

Liang, J. L.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Lin, Q.

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[Crossref]

Liu, B. H.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

Liu, L. L.

Liu, Q.

Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
[Crossref] [PubMed]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

Long, G. L.

B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities,” Opt. Express 22, 6547 (2014).
[Crossref] [PubMed]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[Crossref]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[Crossref]

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Lütkenhaus, N.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295 (1999).
[Crossref]

Lynn, T. W.

N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[Crossref]

Maimaiti, W.

W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
[Crossref]

Mataloni, P.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

Mattle, K.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

Mi, S. C.

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

Monken, C. H.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Munro, W. J.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nebel, C.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Nemoto, K.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Nolte, S.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull.96, (2015).

Pádua, S.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Palomaki, T.

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

Pan, J. W.

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Pernice, W.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Pisenti, N.

N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[Crossref]

Qin, G. Q.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Rath, P.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Ren, B. C.

B. C. Ren and G. L. Long, “General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities,” Opt. Express 22, 6547 (2014).
[Crossref] [PubMed]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664 (2012).
[Crossref] [PubMed]

Restelli, A.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Sasaki, K.

H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
[Crossref]

Sathyamoorthy, S. R.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

Shapiro, J. H.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Shen, W. W.

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

Sheng, Y. B.

Y. B. Sheng and L. Zhou, “Deterministic entanglement distillation for secure double-server blind quantum computation,” Sci. Rep. 5, 7815 (2015).
[Crossref] [PubMed]

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[Crossref]

Shrestha, S.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Siegel, M.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Simon, C.

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[Crossref]

Song, H. S.

Song, J.

Song, S. Y.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

Souto Ribeiro, P. H.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).

Spiller, T. P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

Sproll, F.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

Stace, T. M.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

Steinberg, A. M.

A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011).
[Crossref] [PubMed]

Suominen, K. A.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295 (1999).
[Crossref]

Sych, D.

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

Szameit, A.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull.96, (2015).

Takeoka, M.

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

Takeuchi, S.

H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
[Crossref]

Tong, D. M.

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[Crossref]

Tornberg, L.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

Vallone, G.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

van Loock, P.

F. Ewert and P. van Loock, “3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
[Crossref] [PubMed]

Walborn, S. P.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Wang, C.

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

T. J. Wang, L. L. Liu, R. Zhang, C. Cao, and C. Wang, “One-step hyperentanglement purification and hyperdistillation with linear optics,” Opt. Express 23, 9284 (2015).
[Crossref] [PubMed]

T. J. Wang, C. Cao, and C. Wang, “Linear-optical implementation of hyperdistillation from photon loss,” Phys. Rev. A 89, 052303 (2014).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Wang, G.Y.

Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
[Crossref] [PubMed]

Wang, T. J.

T. J. Wang, L. L. Liu, R. Zhang, C. Cao, and C. Wang, “One-step hyperentanglement purification and hyperdistillation with linear optics,” Opt. Express 23, 9284 (2015).
[Crossref] [PubMed]

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

T. J. Wang, C. Cao, and C. Wang, “Linear-optical implementation of hyperdistillation from photon loss,” Phys. Rev. A 89, 052303 (2014).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Wang, Y. D.

W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
[Crossref]

Wang, Z.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

Wei, H. R.

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664 (2012).
[Crossref] [PubMed]

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis”, Phys. Rev. A 75, 060305 (2007).
[Crossref]

Weinfurter, H.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623 (1998).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[Crossref] [PubMed]

Wilson, C. M.

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

Wittmann, C.

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

Wong, C. W.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Wong, F. N. C.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Wu, Z. W.

Z. W. Wu and L. X. Chen, “Electro-optic analyzer of angular momentum hyperentanglement,” Sci. Rep. 6, 21856 (2016)
[Crossref] [PubMed]

Xia, Y.

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[Crossref]

Xiao, L. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Xie, Z. D.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Xing, X.

A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011).
[Crossref] [PubMed]

Xu, X. A.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Yang, T.

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

Yin, J.

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

Yin, Z. Q.

T. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator,” Sci. Bull. 61, 163 (2016)
[Crossref]

Yu, B.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

Zbinden, H.

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

Zeilinger, A.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

Zhang, M.

Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
[Crossref] [PubMed]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

Zhang, Q.

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

Zhang, R.

Zhang, Y.

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

Zhao, Z.

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

Zhong, T.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Zhou, L.

Y. B. Sheng and L. Zhou, “Deterministic entanglement distillation for secure double-server blind quantum computation,” Sci. Rep. 5, 7815 (2015).
[Crossref] [PubMed]

Zhu, C.

Zukowski, M.

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

J. Mod. Opt. (1)

P. G. Kwiat, “Hyper-entangled states”, J. Mod. Opt. 44, 2173 (1997).
[Crossref]

J. Opt. B (1)

H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single atom nonlinearity,” J. Opt. B 5, 218 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (3)

X. H. Li and S. Ghose, “Hyperconcentration for multipartite entanglement via linear optics,” Laser Phys. Lett. 11, 125201 (2014).
[Crossref]

B. C. Ren, H. R. Wei, and F. G. Deng, “Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity,” Laser Phys. Lett. 10, 095202 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10, 115201 (2013).
[Crossref]

Light Sci. Appl. (2)

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits”, Light Sci. Appl. 4, e338 (2015).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication”, Light Sci. Appl. 4, e286 (2015).
[Crossref]

Nat. Phys. (1)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

Nature Photon. (1)

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nature Photon. 9, 536 (2015)
[Crossref]

Opt. Express (5)

Phys. Lett. A (1)

D. Kalamidas, “Single-photon quantum error rejection and correction with linear optics,” Phys. Lett. A 343, 331 (2005).
[Crossref]

Phys. Rev. A (31)

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90, 052309 (2014).
[Crossref]

C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010).
[Crossref]

B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,” Phys. Rev. A 91, 062302 (2015).
[Crossref]

X. H. Li and S. Ghose, “Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity,” Phys. Rev. A 93, 022302 (2016).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012).
[Crossref]

Q. Liu and M. Zhang, “Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators,” Phys. Rev. A 91, 062321 (2015).
[Crossref]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005).
[Crossref]

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[Crossref]

T. J. Wang, C. Cao, and C. Wang, “Linear-optical implementation of hyperdistillation from photon loss,” Phys. Rev. A 89, 052303 (2014).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,” Phys. Rev. A 88, 012302 (2013).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[Crossref]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012).
[Crossref]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295 (1999).
[Crossref]

J. Calsamiglia, “Generalized measurements by linear elements”, Phys. Rev. A 65, 030301 (2002).
[Crossref]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[Crossref]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis”, Phys. Rev. A 75, 060305 (2007).
[Crossref]

N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A 84, 022340 (2011).
[Crossref]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301 (2009).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623 (1998).
[Crossref]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[Crossref]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162 (1999).
[Crossref]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[Crossref]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005).
[Crossref]

Phys. Rev. Lett. (13)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on BellâǍŹs theorem,” Phys. Rev. Lett. 67, 661 (1991).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557 (1992).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[Crossref] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref] [PubMed]

T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, and M. Żukowski, “All-versus-nothing violation of local realism by two-photon four-dimensional entanglement,” Phys. Rev. Lett. 95, 240406 (2005).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

F. Ewert and P. van Loock, “3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
[Crossref] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656 (1996).
[Crossref] [PubMed]

A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011).
[Crossref] [PubMed]

I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, and L. Tornberg, “Giant cross-Kerr effect for propagating microwaves induced by an artificial atom,” Phys. Rev. Lett. 111, 053601 (2013).
[Crossref] [PubMed]

S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q. Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G. Johansson, “Quantum nondemolition detection of a propagating microwave photon,” Phys. Rev. Lett. 112, 093601 (2014).
[Crossref] [PubMed]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[Crossref]

Quantum Inf. Comput. (1)

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336 (2006).

Sci. Bull. (3)

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Sci. Bull. 60, 1128 (2015).
[Crossref]

T. Li and Z. Q. Yin, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator,” Sci. Bull. 61, 163 (2016)
[Crossref]

C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, “Concentration and distribution of entanglement based on valley qubits system in graphene,” Sci. Bull. 60, 2016 (2015).
[Crossref]

Sci. China Phys. Mech. Astron. (2)

W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, “Entanglement concentration with strong projective measurement in an optomechanical system,” Sci. China Phys. Mech. Astron. 58, 50309 (2015).
[Crossref]

F. F. Du and F. G. Deng, “Heralded entanglement concentration for photon systems with linear-optical elements,” Sci. China Phys. Mech. Astron. 58, 40303 (2015).
[Crossref]

Sci. Rep. (4)

B. C. Ren and F. G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

Z. W. Wu and L. X. Chen, “Electro-optic analyzer of angular momentum hyperentanglement,” Sci. Rep. 6, 21856 (2016)
[Crossref] [PubMed]

Q. Liu, G.Y. Wang, M. Zhang, and F.G. Deng, “Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity,” Sci. Rep. 6, 22016 (2016)
[Crossref] [PubMed]

Y. B. Sheng and L. Zhou, “Deterministic entanglement distillation for secure double-server blind quantum computation,” Sci. Rep. 5, 7815 (2015).
[Crossref] [PubMed]

Other (2)

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl., in press (2016).

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull.96, (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Schematic diagram of the complete polarization Bell state analyzer. The polarizing beam splitters (PBSs) transmit horizontal polarized states while reflecting vertical ones. The half-wave plates (HWPs) implement the Hadamard operations, which transform the phase information of the state into the parity information. The four cross-Kerr nonlinear interactions put phase shifts ±θ on the coherent states |α1〉 and |α2〉 if a photon appears in the corresponding spatial modes. The first QND is used to distinguish | Φ P ± from | Ψ P ± while the second QND reads the relative phase information “±”. After the homodyne measurements on the two coherent states, the four polarization Bell states can be completely distinguished without destroying the entanglement or losing the photons.
Fig. 2
Fig. 2 Schematic diagram of the single-photon Bell state analyzer (SPBSA). PCL (PCS) is a Pockel cell which effects a bit flip operation when the L(S) component is present. Then two unbalanced interferometers composed of two PBSs are used to adjust the time-bin states: the length difference between the long (L) path and the short (S) one is set to cancel the time interval between two time-bins. Then the two paths intersect at a PBS and the photon is measured in the diagonal polarization basis.

Tables (2)

Tables Icon

Table 1 Relations between the original state, the new state of the polarization DOF, and the two phase shifts of the coherent states.

Tables Icon

Table 2 Relations between the new state before the second step and possible detections.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

| ϒ A B = | Θ P A B | Ξ T A B .
| Φ P ± A B = 1 2 ( | H H ± | V V ) A B ,
| Ψ P ± A B = 1 2 ( | H V ± | V H ) A B .
| Φ T ± A B = 1 2 ( | S S ± | L L ) A B ,
| Ψ T ± A B = 1 2 ( | S L ± | L S ) A B .
| Φ P ± | α 1 = 1 2 ( | H H ± | V V ) | α 1 1 2 ( | H H ± | V V ) | α 1 = | Φ P ± | α 1 ,
| Ψ P ± | α 1 = 1 2 ( | H V ± | V H ) | α 1 1 2 ( | H V | α 1 e 2 i θ ± | V H | α 1 e 2 i θ ) = | Ψ P ± | α 1 e ± 2 i θ .
| H 1 2 ( | H + | V ) ,
| V 1 2 ( | H | V ) .
| ϕ ± X = 1 2 ( | H L ± | V S ) X ,
| ψ ± X = 1 2 ( | H S ± | V L ) X .
| ϒ A B = 1 2 ( | H H + | V V ) 1 2 ( | S S + | L L ) .
| φ X = ( α | H + β | V ) ( δ | S + η | L ) .
| φ X | ϒ A B = 1 4 [ | Φ P + X A ( α | H + β | V ) B + | Φ P X A ( α | H β | V ) B + | Ψ P + X A ( α | V + β | H ) B + | Ψ P X A ( α | V β | H ) B ] [ | Φ T + X A ( δ | S + η | L ) B + | Φ T X A ( δ | S η | L ) B + | Ψ P + X A ( δ | L + η | S ) B + | Ψ P X A ( δ | L η | S ) B ] .
| ϒ A C 1 = 1 2 ( | H H + | V V ) A C 1 1 2 ( | S S + | L L ) A C 1 ,
| ϒ C 2 B = 1 2 ( | H H + | V V ) C 2 B 1 2 ( | S S + | L L ) C 2 B .
| ϒ A C 1 | ϒ C 2 B = 1 4 [ ( | Φ P + C 1 C 2 | Φ P + A B + | Φ P C 1 C 2 | Φ P A B + | Ψ P + C 1 C 2 | Ψ P + A B + | Ψ P C 1 C 2 | Ψ P A B ) ( | Φ T + C 1 C 2 | Φ T + A B + | Φ T C 1 C 2 | Φ T A B + | Ψ T + C 1 C 2 | Ψ T + A B + | Ψ T C 1 C 2 | Ψ T A B ) ] .

Metrics