Abstract

We report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes

Jinghuan Yang, Quan Sun, Han Yu, Kosei Ueno, Hiroaki Misawa, and Qihuang Gong
Photon. Res. 5(3) 187-193 (2017)

Photoelectron imaging of modal interference in plasmonic whispering gallery cavities

Pascal Melchior, Deirdre Kilbane, Ernst Jan Vesseur, Albert Polman, and Martin Aeschlimann
Opt. Express 23(25) 31619-31626 (2015)

Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM

Robert C. Word, Joseph P. S. Fitzgerald, and Rolf Könenkamp
Opt. Express 21(25) 30507-30520 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Szunerits and R. Boukherroub, Introduction to Plasmonics (Pan Stanford Publishing, 2015).
  2. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  3. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
    [Crossref]
  4. J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
    [Crossref] [PubMed]
  5. G. Rui and Q. Zhan, “Highly sensitive beam steering with plasmonic antenna,” Sci. Rep. 4, 5962 (2014).
    [Crossref] [PubMed]
  6. A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
    [Crossref] [PubMed]
  7. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [Crossref] [PubMed]
  8. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  9. E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
    [Crossref] [PubMed]
  10. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano 6(2), 1742–1750 (2012).
    [Crossref] [PubMed]
  11. A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
    [Crossref]
  12. L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom. 189, 24–29 (2013).
    [Crossref]
  13. R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Light propagation and interaction observed with electrons,” Ultramicroscopy 160, 84–89 (2016).
    [Crossref] [PubMed]
  14. T. Stenmark, R. C. Word, and R. Könenkamp, “Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum,” Opt. Express 24(4), 3839–3848 (2016).
    [Crossref] [PubMed]
  15. R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM,” Opt. Express 21(25), 30507–30520 (2013).
    [Crossref] [PubMed]
  16. N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
    [Crossref] [PubMed]
  17. C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
    [Crossref] [PubMed]
  18. Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
    [Crossref] [PubMed]
  19. Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
    [Crossref] [PubMed]
  20. R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
    [Crossref]
  21. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
    [Crossref] [PubMed]
  22. R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Electron emission in the near field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
    [Crossref]
  23. Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
    [Crossref]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  26. Microstrip antenna design handbook (Artech House, 2001).
  27. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  28. A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q.-H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
    [Crossref] [PubMed]
  29. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
    [Crossref] [PubMed]
  30. S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
    [Crossref]
  31. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
    [Crossref]
  32. P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
    [Crossref] [PubMed]

2016 (4)

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Light propagation and interaction observed with electrons,” Ultramicroscopy 160, 84–89 (2016).
[Crossref] [PubMed]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

T. Stenmark, R. C. Word, and R. Könenkamp, “Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum,” Opt. Express 24(4), 3839–3848 (2016).
[Crossref] [PubMed]

2015 (2)

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
[Crossref] [PubMed]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

2014 (5)

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

G. Rui and Q. Zhan, “Highly sensitive beam steering with plasmonic antenna,” Sci. Rep. 4, 5962 (2014).
[Crossref] [PubMed]

2013 (6)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom. 189, 24–29 (2013).
[Crossref]

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Electron emission in the near field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM,” Opt. Express 21(25), 30507–30520 (2013).
[Crossref] [PubMed]

2012 (4)

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano 6(2), 1742–1750 (2012).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q.-H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

2011 (3)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

2010 (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

2009 (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

2008 (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

2006 (1)

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

2002 (1)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aeschlimann, M.

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Antoncecchi, A.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Bauer, M.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Bayer, D.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Boltasseva, A.

Brewer, S. H.

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

Buckanie, N. M.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
[Crossref] [PubMed]

Chakrabarty, A.

Charra, F.

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom. 189, 24–29 (2013).
[Crossref]

Chichkov, B. N.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coenen, T.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano 6(2), 1742–1750 (2012).
[Crossref] [PubMed]

Cuche, A.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Devaux, E.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Ditlbacher, H.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Douillard, L.

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom. 189, 24–29 (2013).
[Crossref]

DuanMu, Y.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

Ebbesen, T. W.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

El-Khoury, P. Z.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Emboras, A.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Evlyukhin, A. B.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Fischer, A.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Fitzgerald, J. P. S.

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Light propagation and interaction observed with electrons,” Ultramicroscopy 160, 84–89 (2016).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Electron emission in the near field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM,” Opt. Express 21(25), 30507–30520 (2013).
[Crossref] [PubMed]

Franzen, S.

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

Genet, C.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Gong, Y.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Gu, N.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

Guo, Z.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

Haffner, C.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Hafner, C.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Heringdorf, F.-J. M.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
[Crossref] [PubMed]

Hess, W. P.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Hofer, F.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Hohenau, A.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hohenester, U.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hu, D.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joly, A. G.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Kilbane, D.

Kim, J.

Kirschbaum, P.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
[Crossref] [PubMed]

Koenderink, A. F.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Könenkamp, R.

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Light propagation and interaction observed with electrons,” Ultramicroscopy 160, 84–89 (2016).
[Crossref] [PubMed]

T. Stenmark, R. C. Word, and R. Könenkamp, “Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum,” Opt. Express 24(4), 3839–3848 (2016).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Electron emission in the near field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM,” Opt. Express 21(25), 30507–30520 (2013).
[Crossref] [PubMed]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Krenn, J. R.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Kubo, A.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Leißner, T.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Lemke, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Leuthold, J.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Luisier, M.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Ma, P.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Matsuo, Y.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Melchior, P.

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Minkowski, F.

Misawa, H.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Mohtashami, A.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Naik, G. V.

Niegemann, J.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Pedersen, A.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Polman, A.

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23(25), 31619–31626 (2015).
[Crossref] [PubMed]

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano 6(2), 1742–1750 (2012).
[Crossref] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Radke, J. W.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Reinhardt, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Rui, G.

G. Rui and Q. Zhan, “Highly sensitive beam steering with plasmonic antenna,” Sci. Rep. 4, 5962 (2014).
[Crossref] [PubMed]

Schimmel, T.

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

Schmidt, F.-P.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Schneider, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Sindermann, S.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
[Crossref] [PubMed]

Stenmark, T.

Sun, K.

Sun, Q.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Ueno, K.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Vesseur, E. J.

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano 6(2), 1742–1750 (2012).
[Crossref] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Wang, F.

Wei, Q.-H.

Word, R. C.

T. Stenmark, R. C. Word, and R. Könenkamp, “Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum,” Opt. Express 24(4), 3839–3848 (2016).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Light propagation and interaction observed with electrons,” Ultramicroscopy 160, 84–89 (2016).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM,” Opt. Express 21(25), 30507–30520 (2013).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Electron emission in the near field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Xie, S.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

Xu, L.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

Yi, J.-M.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Yu, H.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

Zhan, Q.

G. Rui and Q. Zhan, “Highly sensitive beam steering with plasmonic antenna,” Sci. Rep. 4, 5962 (2014).
[Crossref] [PubMed]

Zhang, Y.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

ACS Nano (2)

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano 6(2), 1742–1750 (2012).
[Crossref] [PubMed]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10(3), 3835–3842 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale excitation mapping of plasmonic patch antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Phys. Lett. (1)

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

Colloids Surf. (1)

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. 278(1-3), 33–38 (2006).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom. 189, 24–29 (2013).
[Crossref]

J. Phys. Chem. B (1)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106(50), 12986–12992 (2002).
[Crossref]

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[Crossref]

Nano Lett. (5)

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref] [PubMed]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref] [PubMed]

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, “Atomic scale plasmonic switch,” Nano Lett. 16(1), 709–714 (2016).
[Crossref] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Rui and Q. Zhan, “Highly sensitive beam steering with plasmonic antenna,” Sci. Rep. 4, 5962 (2014).
[Crossref] [PubMed]

Surf. Sci. (1)

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Electron emission in the near field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Ultramicroscopy (2)

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. M. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy,” Ultramicroscopy 130, 49–53 (2013).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Light propagation and interaction observed with electrons,” Ultramicroscopy 160, 84–89 (2016).
[Crossref] [PubMed]

Other (2)

S. Szunerits and R. Boukherroub, Introduction to Plasmonics (Pan Stanford Publishing, 2015).

Microstrip antenna design handbook (Artech House, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Experimental scheme showing a gold slot antenna excited by a laser and emitted photoelectrons from the edge of the antenna. (b) 3P-PEEM image of an antenna excited by light at normal incidence. Here the photoelectron emission response is dipolar. (c) 3P-PEEM images of antennas excited by 60°-incidence. The photoelectron distributions are identifiable, from left to right, as a “tripole,” quadrupole, “pentapole,” and hexapole. Note that the photoelectron yield Y is displayed as the sixth root to be comparable to the electric field (Eq. (1)).
Fig. 2
Fig. 2 (a) Profile of a model slot antenna. The outer and inner radii Ro and Ri are the two principle variables in the model. Their difference is the slot width S = Ro-Ri. The maximum field usually occurs at point P when (b) Slot antenna as realized in COMSOL.
Fig. 3
Fig. 3 Contour plots of selected solutions of the Helmholtz equation for waves confined to an isolated disk. The m = 1 modes are dipolar and the m > 1 modes are multipolar.
Fig. 4
Fig. 4 Simulated fields for the first three dipolar resonances of slot antennas with disk radii: (a) 110 nm, (b) 375 nm, and (c) 600 nm. Top: Electric field norm at the xy-plane 10 nm above the metal/dielectric interface. Bottom: Plot of Ez at a selected phase within ITO, 10 nm below the metal/dielectric interface. The fields of the disks closely resemble those obtained from the Helmholtz equation shown in Fig. 3.
Fig. 5
Fig. 5 Dipolar spectral response to normal incident light of slot antennas of radii Ri and slot width 200 nm. The solid curves refer to calculated m = 1 planar modes for n = 1, 2, and 3. The horizontal lines point out the plasma frequency (ɷp) and surface plasmon frequency (ɷsp) of ITO. The circle letters a, b, and c refer to the field distributions shown in Fig. 4.
Fig. 6
Fig. 6 Multipole electric fields excited by light with incidence ϕ = 60°. By number of lobes, the disk radii are: (3) 145 nm, (4) 185 nm, (5) 240 nm, (6) 290 nm, and (7) 355 nm. Top: The electric field norm in the xy-plane 10 nm above the metal/dielectric interface. This view gives an indication of the photoelectron yield seen in PEEM. Bottom: Contour plot of the electric field in the z-direction within ITO, 10 nm below the metal/dielectric interface (z = −10 nm).
Fig. 7
Fig. 7 Multipole spectral response to 60° incident light of slot antennas of radii Ri and slot width 200 nm. The curves refer to calculated n = 1 multipolar planar modes for m = 1 to 6. The horizontal lines point out the plasma frequency ( ω P ) and surface plasmon frequency ( ω SP ) of ITO in terms of energy. The numbers in circles refer to the number of nodes in the field distributions as shown in Fig. 6.
Fig. 8
Fig. 8 (a) Model for the generation of a “pentapole” field distribution created by the superposition of a dipole mode excited by the in-plane electric field with an off-resonance distorted quadrupole mode. The superposition of the two modes leads to enhancement of the field at the trailing edge (P) and a near canceling of the field at the leading edge (Q). (b) This model can be reproduced in FEM using light normal to the antenna plane and light tangential to the antenna plane.
Fig. 9
Fig. 9 (a) Field distribution of an antenna with radius 345 nm excited by λ0 = 745 nm at 60° from normal. (b) Field |E| at the perimeter of the disk with the distance measure from the top, which is point P. (c) Fourier transform of the perimeter field. In addition to the large dipolar component, two peaks are visible with wave number k that can be attributed to the planar mode (m = 4, n = 1) and the edge mode (l = 3).
Fig. 10
Fig. 10 Antenna response to λ0 = 800 nm light for different slot widths and disk radii. Left: normal incidence. Right: 60° incidence. The circled letters refer to the field distributions shown in Fig. 4 while the circled numbers refer to distributions in Fig. 6.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Y | E | 2n ,
2πR λ SPP =l,
[ r 2 E r d 2 E r d r 2 + r E r d E r dr + k SPP 2 r 2 ]+ 1 E θ d 2 E θ d θ 2 =0.
E θ ( θ )= A m cos( mθ )+ B m sin( mθ );
E r ( r )= C m J m ( k SPP r )+ D m Y m ( k SPP r ).
E( r,θ )= E m J m ( k SPP r )[ A m cos( mθ )+ B m sin( mθ ) ].
dE( r,θ ) dr | r n =0,
J m ( k SPP r n )= 1 2 [ J m1 ( k SPP r n ) J m+1 ( k SPP r n ) ]=0.
β( s b )β( Au/Air )= k 0 ϵ 1 ϵ 2 ϵ 1 + ϵ 2
β( a b )β( Au/ITO )= k 0 ϵ 2 ϵ 3 ϵ 2 + ϵ 3 ,

Metrics