Abstract

In this paper we demonstrate highly linear Mach-Zehnder interferometer modulators utilizing heterogeneous integration on a Si substrate (HS-MZM). A record high dynamic range was achieved for silicon devices, obtained using hybrid III-V/Si phase modulation sections and single drive push-pull operation, demonstrating a spurious free dynamic range (SFDR) of 112 dB∙Hz2/3 at 10 GHz, comparable to commercial Lithium Niobate MZMs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon

Chong Zhang, Paul A. Morton, Jacob B. Khurgin, Jon D. Peters, and John E. Bowers
Optica 3(12) 1483-1488 (2016)

30 GHz heterogeneously integrated capacitive InP-on-Si Mach–Zehnder modulators

Torrey Thiessen, Philippe Grosse, Jeremy Da Fonseca, Patricia Billondeau, Bertrand Szelag, Christophe Jany, Joyce k. S. Poon, and Sylvie Menezo
Opt. Express 27(1) 102-109 (2019)

Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer

Jaime Cardenas, Paul A. Morton, Jacob B. Khurgin, Austin Griffith, Carl B. Poitras, Kyle Preston, and Michal Lipson
Opt. Express 21(19) 22549-22557 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  2. W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University Press, 2002), Chap. 4.
  3. R. G. Walker, N. I. Cameron, Y. Zhou, and S. J. Clements, “Optimized gallium arsenide modulators for advanced modulation formats,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400912 (2013).
    [Crossref]
  4. J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
    [Crossref]
  5. W. Forysiak and D. S. Govan, “Progress towards 100-G digital coherent pluggables using InP-based photonics,” J. Lightwave Technol. 32(16), 2925–2934 (2014).
    [Crossref]
  6. P. Dong, L. Chen, and Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [Crossref] [PubMed]
  7. H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, “Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission,” Opt. Express 20(25), 27562–27568 (2012).
    [Crossref] [PubMed]
  8. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
    [Crossref]
  9. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [Crossref]
  10. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  11. X. Xie, J. B. Khurgin, J. Kang, and F-S. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE PTL,  15, 531–533 (2003).
  12. J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, “Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer,” Opt. Express 21(19), 22549–22557 (2013).
    [Crossref] [PubMed]
  13. T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, and C. Eric Stanton, “Zhang, J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
    [Crossref]
  14. H.-W. Chen, “High-Speed Hybrid Silicon Mach-Zehnder Modulator and Tunable Microwave Filter,” PhD thesis, University of California Santa Barbara, 2011.
  15. M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
    [Crossref]
  16. D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
    [Crossref]
  17. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  18. C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.
  19. Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach-Zehnder modulator,” CLEO, 2015.
  20. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
    [Crossref] [PubMed]
  21. A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
    [Crossref]
  22. A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
    [Crossref]
  23. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
    [Crossref] [PubMed]

2016 (2)

T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, and C. Eric Stanton, “Zhang, J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (3)

2012 (3)

2008 (1)

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

2007 (2)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

2006 (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

2003 (2)

X. Xie, J. B. Khurgin, J. Kang, and F-S. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE PTL,  15, 531–533 (2003).

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Aamer, M.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Almeida, V. R.

Assefa, S.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Ayazi, A.

Baehr-Jones, T.

Barwicz, T.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Bowers, J. E.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Bradshaw, S.

J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
[Crossref]

Brimont, A.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Cameron, N. I.

R. G. Walker, N. I. Cameron, Y. Zhou, and S. J. Clements, “Optimized gallium arsenide modulators for advanced modulation formats,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400912 (2013).
[Crossref]

Cardenas, J.

Chen, J.

Chen, L.

Chen, Y. K.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Chow, F-S.

X. Xie, J. B. Khurgin, J. Kang, and F-S. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE PTL,  15, 531–533 (2003).

Clements, S. J.

R. G. Walker, N. I. Cameron, Y. Zhou, and S. J. Clements, “Optimized gallium arsenide modulators for advanced modulation formats,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400912 (2013).
[Crossref]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Corbett, B.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Davenport, M.

Dong, P.

Ellis-Monaghan, J.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Eric Stanton, C.

Fang, A. W.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Fédéli, J.-M.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Forysiak, W.

Galan, J. V.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

Gardes, F. Y.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

Gill, D.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Govan, D. S.

Green, W.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Griffith, A.

Gutiérrez, A. M.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Haensch, W.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Herrera, J.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Hochberg, M.

Hulme, J.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Kamlapurkar, S.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Kang, J.

X. Xie, J. B. Khurgin, J. Kang, and F-S. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE PTL,  15, 531–533 (2003).

Khater, M.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Khurgin, J. B.

Kiewra, E.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Komljenovic, T.

Li, L.

Liang, D.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Lim, A. E.

Lim, A. E.-J.

Lipson, M.

Liu, A.

T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, and C. Eric Stanton, “Zhang, J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Liu, Y.

Lo, G.-Q.

Long, Q.

Marris-Morini, D.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Martí, J.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

Morton, P. A.

Nagy, J.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

O’Callaghan, J.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Oakley, D. C.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Panepucci, R. R.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Park, H.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Pelucchi, E.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Peters, F. H.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Poitras, C. B.

Preston, K.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Reano, R. M.

Reed, G. T.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

Reinholm, C.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Reynolds, T. E.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Rolland, C.

J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
[Crossref]

Rosenberg, J.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Roycroft, B.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

Sanchis, P.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Santis, C.

Shank, S.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Somani, A.

J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
[Crossref]

Spott, A.

Srinivasan, S.

Streshinsky, M.

Stricker, A.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Tan, W.

Thomas, K.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Thomson, D. J.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

Usman Sadiq, M.

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Valley, G. C.

Vivien, L.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Vlasov, Y. A.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Walker, R. G.

R. G. Walker, N. I. Cameron, Y. Zhou, and S. J. Clements, “Optimized gallium arsenide modulators for advanced modulation formats,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400912 (2013).
[Crossref]

Wang, X.

Warner, K.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

Xie, X.

X. Xie, J. B. Khurgin, J. Kang, and F-S. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE PTL,  15, 531–533 (2003).

Xiong, C.

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Xuan, Z.

Yevick, D.

J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
[Crossref]

Yi, H.

Yu, J.

J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
[Crossref]

Zhou, Y.

R. G. Walker, N. I. Cameron, Y. Zhou, and S. J. Clements, “Optimized gallium arsenide modulators for advanced modulation formats,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400912 (2013).
[Crossref]

Zhou, Z.

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196–1197 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. G. Walker, N. I. Cameron, Y. Zhou, and S. J. Clements, “Optimized gallium arsenide modulators for advanced modulation formats,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400912 (2013).
[Crossref]

IEEE PTL (1)

X. Xie, J. B. Khurgin, J. Kang, and F-S. Chow, “Linearized Mach-Zehnder intensity modulator,” IEEE PTL,  15, 531–533 (2003).

IEEE Trans. Microw. Theory Tech. (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

J. Electron. Mater. (1)

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (7)

Opt. Lett. (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

M. Usman Sadiq, J. O’Callaghan, B. Roycroft, K. Thomas, E. Pelucchi, F. H. Peters, and B. Corbett, “Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 930–935 (2016).
[Crossref]

Other (7)

W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University Press, 2002), Chap. 4.

H.-W. Chen, “High-Speed Hybrid Silicon Mach-Zehnder Modulator and Tunable Microwave Filter,” PhD thesis, University of California Santa Barbara, 2011.

J. Yu, C. Rolland, D. Yevick, A. Somani, and S. Bradshaw, “A novel method for improving the performance of InP/InGaAsP multiple-quantum-well Mach-Zehnder modulators by phase shift engineering,” in Proc. IPR' 96 (1996), paper 1TuG4–1.
[Crossref]

C. Xiong, D. Gill, J. Rosenberg, M. Khater, T. Barwicz, S. Assefa, S. Shank, C. Reinholm, E. Kiewra, J. Ellis-Monaghan, S. Kamlapurkar, A. Stricker, W. Green, Y. A. Vlasov, and W. Haensch, “A linear push-pull silicon optical modulator,” in FiO/LS (2014), paper FM3A.4.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach-Zehnder modulator,” CLEO, 2015.

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, M. Aamer, J. Martí, D. Marris-Morini, L. Vivien, J.-M. Fédéli, D. J. Thomson, F. Y. Gardes, G. T. Reed, and P. Sanchis, “Silicon-based electro-optic modulators for linear and nonlinear radio-over-fiber applications,” in 2012 International Topical Meeting on Microwave Photonics (2012), 168–171.
[Crossref]

A. M. Gutiérrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J.-M. Fédéli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in The 9th International Conference on Group IV Photonics (2012), paper 57–59.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Process flow of the HS-MZM: (a) Si WG etch; (b) materials bonding; (c) III-V etch and n-contact; (d) Metallization.
Fig. 2
Fig. 2 (a) The cross-section of the devices with intensity contour of fundamental TE mode; (b) top view SEM image of HS-MZM; (c) SEM image of taper tip from angled view.
Fig. 3
Fig. 3 NIR image of an MZM device, and setup for SFDR measurement.
Fig. 4
Fig. 4 Transmission measurement of 100 μm HS-MZM at multiple wavelengths.
Fig. 5
Fig. 5 Measured Frequency Response for 100 μm HS-MZM: unterminated, 0V, −3V; 50 Ohm −3V.
Fig. 6
Fig. 6 Measured SFDR for 100 μm device. 52 dB for 1 GHz Bandwidth, or 112 dB·Hz2/3.
Fig. 7
Fig. 7 Comparison of modulators on Si: SFDR representing the degree of linearity.

Tables (1)

Tables Icon

Table 1 The epitaxial III-V layers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δn(λ,f)= m=1 4 k=1 4 c mk (λ) V k
Δn(λ,f)= m=1 4 k=1 3 [ c mk +(k+1) c m,k+1 V b +... ] V s k (t)
P s ~sin( 2πΔnL λ ) 2πΔnL λ 1 6 ( 2πΔnL λ ) 3
P s (3) = m=1 4 [ 2πL λ ( c m3 +4 c m4 V b ) 3 ] V s 3 (t) 1 6 [ 2πL λ m=1 4 ( c m1 +2 c m2 V b +3 c m3 V b 2 +4 c m4 V b 3 ) ] 3 V s 3 (t)

Metrics