Abstract

When CCD-based free-space fluorescence molecular tomography (FMT) is used for imaging of fluorescent targets with a large concentration difference, the limited dynamic range of the CCD diminishes the localization and quantitative accuracy of FMT. To overcome this, we present a high-dynamic-range FMT (HDR-FMT) method. Under the multiple-exposure scheme, HDR fluorescence projection images are constructed using the recovered CCD response curve. Image reconstruction is implemented using iterative reweighted L1 regularization which can reduce artifacts by using fewer HDR fluorescence projection images. Phantom and in vivo animal studies indicate that localization of fluorescent targets with a large concentration difference is effectively improved with HDR-FMT and with good quantitative accuracy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT)

Qinggong Tang, Yi Liu, Vassiliy Tsytsarev, Jonathan Lin, Bohan Wang, Udayakumar Kanniyappan, Zhifang Li, and Yu Chen
Biomed. Opt. Express 8(4) 2124-2137 (2017)

An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography

Junwei Shi, Fei Liu, Huangsheng Pu, Simin Zuo, Jianwen Luo, and Jing Bai
Biomed. Opt. Express 5(11) 4039-4052 (2014)

Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter

Xin Liu, Hongkai Wang, and Zhuangzhi Yan
Biomed. Opt. Express 7(11) 4527-4542 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
    [Crossref] [PubMed]
  2. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007).
    [Crossref] [PubMed]
  3. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
    [Crossref] [PubMed]
  4. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
    [Crossref] [PubMed]
  5. V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
    [Crossref] [PubMed]
  6. K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
    [PubMed]
  7. M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
    [Crossref] [PubMed]
  8. D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
    [Crossref] [PubMed]
  9. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
    [Crossref] [PubMed]
  10. G. I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
    [Crossref] [PubMed]
  11. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  12. M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
    [Crossref]
  13. B. C. Madden, “Extended intensity range imaging,” Tech. Rep. (GRASP Laboratory, University of Pennsylvania, 1993), pp. 1–19.
  14. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, T. Whitted, ed. (ACM Press/ Addison-Wesley, 1997), pp. 369–378.
    [Crossref]
  15. A. A. Goshtasby, “Fusion of multi-exposure images,” Image Vis. Comput. 23(6), 611–618 (2005).
    [Crossref]
  16. P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express 20(8), 8824–8836 (2012).
    [Crossref] [PubMed]
  17. C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
    [Crossref] [PubMed]
  18. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
    [Crossref] [PubMed]
  19. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
    [Crossref] [PubMed]
  20. W. Xie, Y. Deng, K. Wang, X. Yang, and Q. Luo, “Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements,” Opt. Lett. 39(14), 4148–4151 (2014).
    [Crossref] [PubMed]
  21. X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
    [Crossref] [PubMed]
  22. G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
    [Crossref] [PubMed]
  23. X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
    [Crossref] [PubMed]
  24. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
    [Crossref] [PubMed]
  25. Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
    [Crossref] [PubMed]
  26. C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
    [Crossref] [PubMed]
  27. Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
    [Crossref] [PubMed]
  28. T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
    [Crossref] [PubMed]
  29. X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
    [Crossref] [PubMed]
  30. A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
    [Crossref] [PubMed]
  31. X. Jiang, Y. Deng, Z. Luo, K. Wang, L. Lian, X. Yang, I. Meglinski, and Q. Luo, “Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media,” Opt. Express 22(26), 31948–31965 (2014).
    [Crossref] [PubMed]
  32. Y. Deng, Z. Luo, X. Jiang, W. Xie, and Q. Luo, “Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model,” Opt. Lett. 40(13), 3129–3132 (2015).
    [Crossref] [PubMed]
  33. J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
    [Crossref] [PubMed]
  34. D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
    [Crossref] [PubMed]
  35. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
    [Crossref] [PubMed]
  36. R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
    [Crossref] [PubMed]
  37. J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
    [Crossref] [PubMed]
  38. C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express 17(9), 7571–7585 (2009).
    [Crossref] [PubMed]
  39. J. H. Lee, H. K. Kim, C. Chandhanayingyong, F. Y.-I. Lee, and A. H. Hielscher, “Non-contact small animal fluorescence imaging system for simultaneous multi-directional angular-dependent data acquisition,” Biomed. Opt. Express 5(7), 2301–2316 (2014).
    [Crossref] [PubMed]

2016 (2)

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Deng, Z. Luo, X. Jiang, W. Xie, and Q. Luo, “Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model,” Opt. Lett. 40(13), 3129–3132 (2015).
[Crossref] [PubMed]

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (2)

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

2012 (6)

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

G. I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V. V. Yakovlev, “Human tissue color as viewed in high dynamic range optical spectral transmission measurements,” Biomed. Opt. Express 3(9), 2154–2161 (2012).
[Crossref] [PubMed]

P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express 20(8), 8824–8836 (2012).
[Crossref] [PubMed]

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

2010 (6)

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref] [PubMed]

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
[Crossref] [PubMed]

2009 (4)

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

C. Li, G. S. Mitchell, J. Dutta, S. Ahn, R. M. Leahy, and S. R. Cherry, “A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design,” Opt. Express 17(9), 7571–7585 (2009).
[Crossref] [PubMed]

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

2007 (5)

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007).
[Crossref] [PubMed]

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[Crossref] [PubMed]

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

2006 (1)

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

2005 (2)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref] [PubMed]

A. A. Goshtasby, “Fusion of multi-exposure images,” Image Vis. Comput. 23(6), 611–618 (2005).
[Crossref]

2003 (1)

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

2001 (1)

1999 (1)

C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
[Crossref] [PubMed]

Abascal, J. F. P.-J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Aguirre, J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Ahn, S.

Aichler, M.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

Aikawa, E.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Ale, A.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Arridge, S.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Bai, J.

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
[Crossref] [PubMed]

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007).
[Crossref] [PubMed]

Baldwin, A. S.

C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
[Crossref] [PubMed]

Barber, W. C.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref] [PubMed]

Basevi, H. R.

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

Bogaards, A.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Borman, S.

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

Brooks, D. H.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

Cao, W.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Cao, X.

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

Chamorro-Servent, J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Chandhanayingyong, C.

Chen, J.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Chen, N.

Cherry, S. R.

Christensen, J.

D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
[Crossref] [PubMed]

Cohrs, C.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Corbin, I.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Cusack, J. C.

C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
[Crossref] [PubMed]

de Angelis, M. H.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

de Kleine, R.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

Dehghani, H.

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Deliolanis, N.

Deng, Y.

Desco, M.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Dhonukshe, P. B.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Ding, L.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Doronin, A.

Dutta, J.

El-Ghussein, F.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Ermolayev, V.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Fei, P.

Fischer, S.

D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
[Crossref] [PubMed]

Frampton, J.

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

Fu, J.

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

Fu, Y.

Fumene Feruglio, P.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Gadella, T. W.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Gao, H.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[Crossref] [PubMed]

Giedt, R. J.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Gong, H.

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Goshtasby, A. A.

A. A. Goshtasby, “Fusion of multi-exposure images,” Image Vis. Comput. 23(6), 611–618 (2005).
[Crossref]

Groves, K.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Guggenheim, J. A.

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

Gulsen, G.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[Crossref] [PubMed]

Gunn, J. R.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Guo, X.

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

He, Z.

Hennink, W.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Herzog, E.

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

Hielscher, A. H.

Hoebe, R. A.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Holt, R. W.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Hu, G.

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

Huang, C.

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

Huang, Y.

Huber, P.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Hyde, D.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

Iwanczyk, J. S.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

Jermyn, M.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Jiang, X.

Jin, H.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Kayser, G.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

Kim, H. K.

Kim, J. H.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Kim, M. S.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Krucker, T.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

Kühnlein, R.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Kwon, D. Y.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Kwon, J. S.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Lammers, T.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Lasser, T.

Leahy, R. M.

Leblond, F.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Lee, F. Y.-I.

Lee, J. H.

Leon Swisher, C.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Li, C.

Lian, L.

Lilge, L.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Lin, Y.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[Crossref] [PubMed]

Liu, F.

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
[Crossref] [PubMed]

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

Liu, R.

C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
[Crossref] [PubMed]

Liu, X.

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
[Crossref] [PubMed]

Lovell, J. F.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Lu, P. J.

Luo, J.

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

Luo, Q.

Y. Deng, Z. Luo, X. Jiang, W. Xie, and Q. Luo, “Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model,” Opt. Lett. 40(13), 3129–3132 (2015).
[Crossref] [PubMed]

X. Jiang, Y. Deng, Z. Luo, K. Wang, L. Lian, X. Yang, I. Meglinski, and Q. Luo, “Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media,” Opt. Express 22(26), 31948–31965 (2014).
[Crossref] [PubMed]

W. Xie, Y. Deng, K. Wang, X. Yang, and Q. Luo, “Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements,” Opt. Lett. 39(14), 4148–4151 (2014).
[Crossref] [PubMed]

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Luo, Z.

MacLaurin, S. A.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

Manders, E. M.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Marinelli, B.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Meglinski, I.

Miller, E.

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

Min, B. H.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Mitchell, G. S.

Mohajerani, P.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

Nahrendorf, M.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Nalcioglu, O.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[Crossref] [PubMed]

Ntziachristos, V.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
[Crossref] [PubMed]

Oh, H. J.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Panizzi, P.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Park, J. H.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Park, K.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Park, S. H.

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Peschke, P.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Petrov, G. I.

Pittet, M. J.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Pogue, B. W.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Quan, G.

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Rajopadhye, M.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Ripoll, J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref] [PubMed]

Robertson, M. A.

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

Roeck, W.

Roeck, W. W.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

Ronneberger, O.

D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
[Crossref] [PubMed]

Rousso, D. L.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Samkoe, K. S.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Sarantopoulos, A.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

Schweiger, M.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Shastri, V. P.

D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
[Crossref] [PubMed]

Song, X.

Soubret, A.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[Crossref] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref] [PubMed]

Stapleton, S.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Sterenborg, H. J.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Stevenson, R. L.

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

Storm, G.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Styles, I. B.

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

Subr, V.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Swirski, F. K.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Thurber, G.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Tian, F.

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

Tichauer, K. M.

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Trachtenberg, J.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Ulbrich, K.

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Van Noorden, C. J.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Van Oven, C. H.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Vaquero, J. J.

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Vinegoni, C.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Vonwil, D.

D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
[Crossref] [PubMed]

Walch, A.

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

Wang, C.-Y.

C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
[Crossref] [PubMed]

Wang, D.

Wang, H.

Wang, K.

Wang, X.

P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express 20(8), 8824–8836 (2012).
[Crossref] [PubMed]

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

Waterman, P.

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Weissleder, R.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
[Crossref] [PubMed]

Whelan, H. T.

Wilson, B. C.

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Xie, W.

Xiong, J.

Yakovlev, V. V.

Yang, M.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Yang, X.

W. Xie, Y. Deng, K. Wang, X. Yang, and Q. Luo, “Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements,” Opt. Lett. 39(14), 4148–4151 (2014).
[Crossref] [PubMed]

X. Jiang, Y. Deng, Z. Luo, K. Wang, L. Lian, X. Yang, I. Meglinski, and Q. Luo, “Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media,” Opt. Express 22(26), 31948–31965 (2014).
[Crossref] [PubMed]

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Yu, Z.

Zhang, B.

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

Zhang, G.

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Zheng, G.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Arterioscler. Thromb. Vasc. Biol. (1)

M. Nahrendorf, P. Waterman, G. Thurber, K. Groves, M. Rajopadhye, P. Panizzi, B. Marinelli, E. Aikawa, M. J. Pittet, F. K. Swirski, and R. Weissleder, “Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors,” Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009).
[Crossref] [PubMed]

Biomaterials (1)

Y. Kim, D. Y. Kwon, J. S. Kwon, J. H. Park, S. H. Park, H. J. Oh, J. H. Kim, B. H. Min, K. Park, and M. S. Kim, “Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot,” Biomaterials 85, 232–245 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Comput. Med. Imaging Graph. (1)

X. Yang, H. Gong, J. Fu, G. Quan, C. Huang, and Q. Luo, “Molecular imaging of small animals with fluorescent proteins: From projection to multimodality,” Comput. Med. Imaging Graph. 36(4), 259–263 (2012).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng. 57(12), 2876–2883 (2010).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref] [PubMed]

Image Vis. Comput. (1)

A. A. Goshtasby, “Fusion of multi-exposure images,” Image Vis. Comput. 23(6), 611–618 (2005).
[Crossref]

Int. J. Cancer (1)

V. Ermolayev, P. Mohajerani, A. Ale, A. Sarantopoulos, M. Aichler, G. Kayser, A. Walch, and V. Ntziachristos, “Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model,” Int. J. Cancer 137(5), 1107–1118 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17(3), 036013 (2012).
[Crossref] [PubMed]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt. 15(4), 040503 (2010).
[Crossref] [PubMed]

J. Electron. Imaging (1)

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

J. Vis. Exp. (1)

K. M. Tichauer, R. W. Holt, K. S. Samkoe, F. El-Ghussein, J. R. Gunn, M. Jermyn, H. Dehghani, F. Leblond, and B. W. Pogue, “Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers,” J. Vis. Exp. 65, e4050 (2012).
[PubMed]

Lasers Surg. Med. (1)

A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39(7), 605–613 (2007).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. A. Guggenheim, H. R. Basevi, J. Frampton, I. B. Styles, and H. Dehghani, “Multi-modal molecular diffuse optical tomography system for small animal imaging,” Meas. Sci. Technol. 24(10), 105405 (2013).
[Crossref] [PubMed]

Mol. Imaging Biol. (1)

D. Vonwil, J. Christensen, S. Fischer, O. Ronneberger, and V. P. Shastri, “Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats,” Mol. Imaging Biol. 16(3), 350–361 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Nat. Med. (1)

C.-Y. Wang, J. C. Cusack, R. Liu, and A. S. Baldwin., “Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB,” Nat. Med. 5(4), 412–417 (1999).
[Crossref] [PubMed]

Nat. Methods (2)

A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods 9(6), 615–620 (2012).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Neoplasia (1)

T. Lammers, P. Peschke, R. Kühnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm, “Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems,” Neoplasia 8(10), 788–795 (2006).
[Crossref] [PubMed]

Neuroimage (1)

D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-β plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Phys. Med. Biol. (2)

G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol. 58(2), 351–372 (2013).
[Crossref] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Other (2)

B. C. Madden, “Extended intensity range imaging,” Tech. Rep. (GRASP Laboratory, University of Pennsylvania, 1993), pp. 1–19.

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, T. Whitted, ed. (ACM Press/ Addison-Wesley, 1997), pp. 369–378.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental system.
Fig. 2
Fig. 2 (a)–(c) Fluorescence projection images captured by the CCD camera with exposure times of 1.0 s, 2.0 s, and 3.0 s respectively. (d) Recovered CCD response curve, where the underlying data ( E t i , U fi ) are the light green dots and the solid black line is the fitted curve (x axis is log e ). (e) Constructed HDR fluorescence projection image.
Fig. 3
Fig. 3 Comparison of phantom study results. (a) 3D view of the cylindrical phantom with three embedded fluorescent targets. (b)–(d) Reconstruction using the fluorescence projection images acquired with exposure times of 1.0, 2.0, and 3.0 s, respectively. (e) HDR-FMT reconstruction using the constructed HDR fluorescence projection images. (f) Average reconstructed FMT intensity as a function of true DiR-BOA concentration. The reconstructed values were normalized to the maximum value. The red triangle, the cyan circle, and the black circle indicate the results of the fluorescent targets in (b)–(d), respectively. The blue triangles indicate the result of HDR-FMT in (e) and the blue line represents its linear fit result. [Fluorescence signals in (b)–(e) are on a logarithmic scale and the 3D rendering was implemented using AMIRA software, FEI Company, Hillsboro, OR, USA].
Fig. 4
Fig. 4 Comparison of the results of the tumor-bearing mouse study. (a) Fluorescence reflectance image. (b) Fluorescence reflectance image superimposed on a white light image. Tumors are labeled T1 and T2. (c) 3D rendering of the mouse and highlighted tumor areas (in the white dashed circles). Region between the two dashed lines was used for FMT reconstruction. (d)–(f) 3D rendering of mouse skin based on XCT and fluorescence signals based on FMT reconstruction using low-dynamic-range fluorescence projection images obtained with exposure times of 0.5, 1.5, and 2.5 s, respectively. (g) 3D rendering of mouse skin and fluorescence signals based on HDR-FMT. (h) Overlay of oblique sections obtained from XCT and HDR-FMT. White arrows point to the reconstructed FMT signals. (i) Intensity profiles of the HDR-FMT and low-dynamic-range reconstructed results. The red, cyan, yellow, and gray lines represent the reconstructed results of HDR-FMT, exposure time of 0.5 s, 1.5 s, and 2.5 s, respectively. [Coordinate system was defined by D (dorsal), V (ventral), Cr (cranial), Cd (caudal), L (left), and R (right). 3D renderings in (c)–(g) were implemented using AMIRA software.]

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

U f i = f ( E t i ) .
g ( U f i ) = l n E + l n t i .
[ g , E ] = argmin ( w ( z ) h ( g , E ) 2 + σ ) ,
w ( z ) = exp [ 4 ( z Z m i d ) 2 / Z mid 2 ] ,
σ = λ Z min + 1 Z max 1 [ w ( z ) g ' ' ( z ) ] 2 ,
L f H D R = i = 1 p w ( U f i ) [ g ( U f i ) l n t i ] i = 1 p w ( U f i ) ,
U mea nB ( r d , r s ) = U f ( r d , r s ) / U e ( r d , r s ) .
U m e a n B = W x ,
x I R L 1 k + 1 = arg x 0 min 1 2 W x U m e a n B 2 2 + λ M k x 1 ,
m i i k + 1 = 1 | x i k | + α ,
( x I R L 1 k + 1 , d k + 1 ) = min x , d λ d 1 + 1 2 W x U m e a n B 2 2 + μ 2 d M k x b k 2 2 ,
b k + 1 = b k + ( M x k +1 d k + 1 ) ,

Metrics