Abstract

Femtosecond laser-induced hard X-ray generation in air from a 100-µm-thick solution film of distilled water or Au nano-sphere suspension was carried out by using a newly-developed automatic positioning system with 1-µm precision. By positioning the solution film for the highest X-ray intensity, the optimum position shifted upstream as the laser power increased due to breakdown. Optimized positioning allowed us to control X-ray intensity with high fidelity. X-ray generation from Au nano-sphere suspension and distilled water showed different power scaling. Linear and nonlinear absorption mechanism are analyzed together with numerical modeling of light delivery.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic position shifts of X-ray emission from a water film induced by a pair of time-delayed femtosecond laser pulses

Wei-Hung Hsu, Frances Camille P. Masim, Armandas Balčytis, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 25(20) 24109-24118 (2017)

Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses

Koji Hatanaka, Takahito Ida, Hiroshi Ono, Shin-ichi Matsushima, Hiroshi Fukumura, Saulius Juodkazis, and Hiroaki Misawa
Opt. Express 16(17) 12650-12657 (2008)

Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation

Frances Camille P. Masim, Hao-Li Liu, Matteo Porta, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, Wei-Hung Hsu, and Koji Hatanaka
Opt. Express 24(13) 14781-14792 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
    [Crossref]
  2. X. L. Liu, X. Lu, X. Liu, T.-T. Xi, F. Liu, J.-L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
    [Crossref] [PubMed]
  3. E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
    [Crossref]
  4. J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
    [Crossref]
  5. S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
    [Crossref]
  6. V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
    [Crossref] [PubMed]
  7. L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
    [Crossref] [PubMed]
  8. K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
    [Crossref]
  9. K. Hatanaka and H. Fukumura, “Femtosecond laser-induced x-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).
  10. S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
    [Crossref]
  11. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
    [Crossref]
  12. K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” App. Phys. Lett. 80(21), 3925 (2002).
    [Crossref]
  13. K. Hatanaka, T. Miura, and H. Fukumura, “White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as functions of laser intensity, solute concentration and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
    [Crossref]
  14. K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
    [Crossref] [PubMed]
  15. D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
    [Crossref]
  16. K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
    [Crossref]
  17. K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
    [Crossref]
  18. K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
    [Crossref]
  19. A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
    [Crossref]
  20. V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
    [Crossref]
  21. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics at surface plasmon electronic oscillation in gold and silver nanodots and nanorods,” J. Phys. Chem. B 13, 8410–8426 (1999).
    [Crossref]
  22. L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C. 119, 13893–13900 (2015).
    [Crossref]
  23. D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
    [Crossref]
  24. P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
    [Crossref]
  25. K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient x-ray generation from gold nano-colloidal suspensions,” Sci. Rep. (in review; available as arXiv preprint http://arxiv.org/abs/1604.07541 ) (2016).
  26. M. Kondoh and M. Tsubouchi, “Liquid-sheet jets for terahertz spectroscopy,” Opt. Express 22, 14135–14147 (2014).
    [Crossref] [PubMed]
  27. Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31, 56–62 (2001).
    [Crossref]
  28. F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W. H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
    [Crossref] [PubMed]
  29. F. C. P. Masim, W. H. Hsu, C.-H. Tsai, H. L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(14), 17050–17059 (2016).
    [Crossref] [PubMed]
  30. N. Linz, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B. 91, 134114 (2015).
    [Crossref]
  31. H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).
  32. V. Mizeikis, E. Kowalska, and S. Juodkazis, “Resonant localization, enhancement and polarization of optical fields in nano-scale interface regions for photocatalytic applications,” J. Nanosci. Nanotechnol. 11, 2814–2822 (2011).
    [Crossref] [PubMed]
  33. R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter, (Springer, 2001).
    [Crossref]

2016 (4)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
[Crossref]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W. H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref] [PubMed]

F. C. P. Masim, W. H. Hsu, C.-H. Tsai, H. L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(14), 17050–17059 (2016).
[Crossref] [PubMed]

2015 (3)

N. Linz, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B. 91, 134114 (2015).
[Crossref]

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C. 119, 13893–13900 (2015).
[Crossref]

P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
[Crossref]

2014 (1)

2013 (1)

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

2012 (3)

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

2011 (3)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

V. Mizeikis, E. Kowalska, and S. Juodkazis, “Resonant localization, enhancement and polarization of optical fields in nano-scale interface regions for photocatalytic applications,” J. Nanosci. Nanotechnol. 11, 2814–2822 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

2008 (7)

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced x-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

2006 (1)

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

2004 (2)

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as functions of laser intensity, solute concentration and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

2002 (2)

K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” App. Phys. Lett. 80(21), 3925 (2002).
[Crossref]

2001 (1)

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31, 56–62 (2001).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics at surface plasmon electronic oscillation in gold and silver nanodots and nanorods,” J. Phys. Chem. B 13, 8410–8426 (1999).
[Crossref]

Ahmad, S.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Altucci, C.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Andreeva, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Ayyub, P.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Balcytis, A.

Bauer, D.

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

Berge, L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Brabec, T.

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

Bruno, A.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Bukin, V. V.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Bulanov, S. V.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Carvalho, D.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Chakraborty, I.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Chen, L. M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Chen, M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Chin, S. L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Choo, Y. J.

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31, 56–62 (2001).
[Crossref]

Dai, H.

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

Das, A.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

de Lisio, C.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Delfour, L.

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C. 119, 13893–13900 (2015).
[Crossref]

Dinh, P. M.

P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
[Crossref]

Dong, Q. L.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics at surface plasmon electronic oscillation in gold and silver nanodots and nanorods,” J. Phys. Chem. B 13, 8410–8426 (1999).
[Crossref]

Esaulkov, M. N.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Fehske, H.

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

Fennel, T.

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

Fukumura, H.

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced x-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

K. Hatanaka, T. Miura, and H. Fukumura, “White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as functions of laser intensity, solute concentration and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” App. Phys. Lett. 80(21), 3925 (2002).
[Crossref]

K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
[Crossref]

Fukushima, M.

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

Garnov, S. V.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Gonzalez de Martinez, P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Hashimoto, T.

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

Hatanaka, K.

F. C. P. Masim, W. H. Hsu, C.-H. Tsai, H. L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(14), 17050–17059 (2016).
[Crossref] [PubMed]

F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W. H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref] [PubMed]

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced x-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

K. Hatanaka, T. Miura, and H. Fukumura, “White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as functions of laser intensity, solute concentration and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” App. Phys. Lett. 80(21), 3925 (2002).
[Crossref]

K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
[Crossref]

Hsu, W. H.

Ida, T.

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
[Crossref]

Irsig, R.

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

Itina, T. E.

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C. 119, 13893–13900 (2015).
[Crossref]

Juodkazis, S.

F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W. H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref] [PubMed]

F. C. P. Masim, W. H. Hsu, C.-H. Tsai, H. L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(14), 17050–17059 (2016).
[Crossref] [PubMed]

V. Mizeikis, E. Kowalska, and S. Juodkazis, “Resonant localization, enhancement and polarization of optical fields in nano-scale interface regions for photocatalytic applications,” J. Nanosci. Nanotechnol. 11, 2814–2822 (2011).
[Crossref] [PubMed]

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

Kahaly, S.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Kajimoto, S.

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

Kando, M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kang, B. S.

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31, 56–62 (2001).
[Crossref]

Kato, Y.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kaw, P. K.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Koga, J.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kondoh, M.

Kosareva, O. G.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Kowalska, E.

V. Mizeikis, E. Kowalska, and S. Juodkazis, “Resonant localization, enhancement and polarization of optical fields in nano-scale interface regions for photocatalytic applications,” J. Nanosci. Nanotechnol. 11, 2814–2822 (2011).
[Crossref] [PubMed]

Kumar, G. R.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Kumar, R.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
[Crossref]

Lad, A. D.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
[Crossref]

Li, Y. T.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics at surface plasmon electronic oscillation in gold and silver nanodots and nanorods,” J. Phys. Chem. B 13, 8410–8426 (1999).
[Crossref]

Linz, N.

N. Linz, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B. 91, 134114 (2015).
[Crossref]

Liu, F.

Liu, H. L.

Liu, J.

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

Liu, X.

Liu, X. L.

Lochbrunner, S.

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

Lozovoi, V. I.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Lu, X.

Ma, J.-L.

Makarov, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Malyutin, A. A.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Martirosyan, A. E.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Masim, F. C. P.

Matsuhima, S.

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

Matsushima, S.

Meiwes-Broer, K. H.

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

Menzel, R.

R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter, (Springer, 2001).
[Crossref]

Misawa, H.

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

Miura, T.

K. Hatanaka, T. Miura, and H. Fukumura, “White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as functions of laser intensity, solute concentration and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” App. Phys. Lett. 80(21), 3925 (2002).
[Crossref]

K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
[Crossref]

Mizeikis, V.

V. Mizeikis, E. Kowalska, and S. Juodkazis, “Resonant localization, enhancement and polarization of optical fields in nano-scale interface regions for photocatalytic applications,” J. Nanosci. Nanotechnol. 11, 2814–2822 (2011).
[Crossref] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

Mondal, S.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Narayanan, V.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Negafuchi, K.

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

Nguyen, M. T.

Ono, H.

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
[Crossref]

Panov, N. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Passig, J.

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
[Crossref]

Porta, M.

Porzio, A.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Redmer, R.

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

Reinhard, P.-G.

P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
[Crossref]

Sato, D.

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

Schelev, M. Y.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Sengupta, S.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Sheng, Z. M.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Shkurinov, A. P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Singh, P.

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

Solimeno, S.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Solyankin, P. M.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Suraud, E.

P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
[Crossref]

Tajima, T.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Tiggesbaumker, J.

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

Truong, N. X.

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

Tsai, C.-H.

Tsubouchi, M.

Ueno, K.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

Vorob’ev, N. S.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Wang, H.

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

Wang, K.

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

Wang, W. M.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Wang, X.

Wopper, P.

P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
[Crossref]

Xi, T.-T.

Xu, H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Xu, M. H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Yadav, S. K.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Yang, Z.

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

Yatskovskii, I. S.

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Yomogihita, K.

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

Yonezawa, T.

Yuan, X. H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Zhang, J.

X. L. Liu, X. Lu, X. Liu, T.-T. Xi, F. Liu, J.-L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[Crossref] [PubMed]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

AIP Conf. Proc. (1)

K. Hatanaka, T. Miura, H. Ono, and H. Fukumura, “Photon energy conversion of IR femtosecond laser pulses into x-ray pulse using electrolyte aqueous solutions in air,” AIP Conf. Proc. 634, 260–267 (2002).
[Crossref]

App. Phys. Lett. (2)

K. Hatanaka, H. Ono, and H. Fukumura, “X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses,” App. Phys. Lett. 93, 064103 (2008).
[Crossref]

K. Hatanaka, T. Miura, and H. Fukumura, “Ultrafast x-ray pulse generation by focusing femtosecond infrared laser pulses onto aqueous solutions of alkali metal chloride,” App. Phys. Lett. 80(21), 3925 (2002).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[Crossref]

Chem. Phys. (1)

K. Hatanaka, T. Miura, and H. Fukumura, “White x-ray pulse emission of alkali halide aqueous solutions irradiated by focused femtosecond laser pulses: a spectroscopic study on electron temperatures as functions of laser intensity, solute concentration and solute atomic number,” Chem. Phys. 299, 265–270 (2004).
[Crossref]

Exp. Fluids (1)

Y. J. Choo and B. S. Kang, “Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method,” Exp. Fluids 31, 56–62 (2001).
[Crossref]

J. Anal. Spectrom. (1)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. Spectrom. 31, 90–118 (2016).
[Crossref]

J. Appl. Phys. (1)

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

J. Nanosci. Nanotechnol. (1)

V. Mizeikis, E. Kowalska, and S. Juodkazis, “Resonant localization, enhancement and polarization of optical fields in nano-scale interface regions for photocatalytic applications,” J. Nanosci. Nanotechnol. 11, 2814–2822 (2011).
[Crossref] [PubMed]

J. Non-Crys. Sol. (1)

K. Hatanaka, K. Yomogihita, H. Ono, K. Negafuchi, H. Fukumura, M. Fukushima, T. Hashimoto, S. Juodkazis, and H. Misawa, “Hard x-ray generation using femtosecond irradiation of PbO glass,” J. Non-Crys. Sol. 354, 5485–5490 (2008).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics at surface plasmon electronic oscillation in gold and silver nanodots and nanorods,” J. Phys. Chem. B 13, 8410–8426 (1999).
[Crossref]

J. Phys. Chem. C. (1)

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C. 119, 13893–13900 (2015).
[Crossref]

N. J. Phys. (2)

D. Bauer, T. Brabec, H. Fehske, S. Lochbrunner, K. H. Meiwes-Broer, and R. Redmer, “Focus on correlation effects in radiation fields,” N. J. Phys. 15, 065015 (2013).
[Crossref]

J. Passig, R. Irsig, N. X. Truong, T. Fennel, J. Tiggesbaumker, and K. H. Meiwes-Broer, “Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy,” N. J. Phys. 14, 085020 (2012).
[Crossref]

New Glass (1)

K. Hatanaka and H. Fukumura, “Femtosecond laser-induced x-ray pulse emission from transparent materials including glasses,” New Glass 19, 61–66 (2008).

Opt. Express (5)

Phys. Rep. (2)

P. Wopper, P. M. Dinh, P.-G. Reinhard, and E. Suraud, “Electrons as probes of dynamics in molecules and clusters: a contribution from time dependent density functional theory,” Phys. Rep. 562, 1–68 (2015).
[Crossref]

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508, 91–243 (2011).
[Crossref]

Phys. Rev. B. (3)

S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A. D. Lad, V. Narayanan, P. Ayyub, and R. Kumar, “Highly enhanced x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses,” Phys. Rev. B. 83, 035408 (2011).
[Crossref]

N. Linz, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B. 91, 134114 (2015).
[Crossref]

H. Wang, K. Wang, J. Liu, H. Dai, and Z. Yang, “Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model,” Phys. Rev. B. 20, 19264 (2012).

Phys. Rev. Lett. (3)

V. A. Andreeva, O. G. Kosareva, N. A. Panov, P. M. Solyankin, M. N. Esaulkov, P. Gonzalez de Martinez, A. P. Shkurinov, V. A. Makarov, L. Berge, and S. L. Chin, “Ultrabroad terahertz spectrum generation from an air-based filament plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Quan. Elec. (1)

V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Lozovoi, A. A. Malyutin, M. Y. Schelev, and I. S. Yatskovskii, “Formation and development dynamics of femtosecond laser microplasma in gases,” Quan. Elec. 36(7), 638–645 (2006).
[Crossref]

Rev. Laser Eng. (1)

D. Sato, S. Matsuhima, H. Ono, S. Kajimoto, H. Fukumura, and K. Hatanaka, “Circularly polarized femtosecond laser-induced pulsed x-ray emission from distilled water,” Rev. Laser Eng. 37(12), 101–104 (2009).
[Crossref]

X-ray Spectrom. (1)

K. Hatanaka and H. Fukumura, “X-ray emission from CsCl aqueous solutions when irradiated by intense femtosecond laser pulses and its application to time-resolved XAFS measurement of I− in aqueous solution,” X-ray Spectrom. 41, 195–200 (2012).
[Crossref]

Other (2)

K. Hatanaka, M. Porta, F. C. P. Masim, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient x-ray generation from gold nano-colloidal suspensions,” Sci. Rep. (in review; available as arXiv preprint http://arxiv.org/abs/1604.07541 ) (2016).

R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter, (Springer, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental set-up of the automatic positioning system for X-ray emission from solutions. Angle of incidence θ = 60°. Laser pulses of λ = 800 nm wavelength and tp = 40 fs were used in experiments at 1 kHz repetition rate. The red mark in the inset photo indicates the position of the laser focus.
Fig. 2
Fig. 2 Time sequence of X-ray counts (a) and position-dependent X-ray counts (red circle) (b) measured with a Geiger counter when the laser power Pa was 1 W. X-ray intensities at the valleys pointed by the green and blue arrows are lower than 5% of the peak intensity (a), where the 3D-automatic stage changed its moving direction. The black line (b) which indicates the moving route of the 3D-automatic stage shows its moving direction change pointed by the blue and green arrows as in (a). Additionally, the slope of black line shows that the 3D-stage moved with a starting velocity of 300 µm/sec to find out the peak position quickly; furthermore, while approaching the peak position, the 3D-automatic stage decreased its velocity to 1 µm/sec to recognize the peak finely.
Fig. 3
Fig. 3 X-ray intensity spatial profile (a), air plasma (b) as a function of laser power, and (c) numerical simulation of light focusing on a water jet at the used experimental conditions. Focal position in air would be in the middle point of the jet. Inset shows a setting for FDTD simulations (Lumerical). Intensity is plotted in logarithmic scale from -3 to -0.18 for the linearly p-polarized Gaussian beam of intensity E2 = 1.
Fig. 4
Fig. 4 X-ray intensity from Au nano-sphere colloidal suspension at 0.1 and 0.2 W laser power (a). Inset shows TEM image of Au spherical particles with a diameter of 20 nm. (b) FDTD calculated (Lumerical) extinction cross-section spectrum of 2r = 20 nm diameter gold nanoparticles suspended in an aqueous refractive index environment, normalized to the geometric footprint area of the particle. Shaded area indicates the overwhelming dominance of absorption in the total extinction. Inset shows the total electric field intensity distribution in the xz plane as well as its constituent |Ex|2 and |Ez|2 projections at the excitation wavelength λ = 800 nm (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( I ) = n 0 + 1 2 e 11 c 0 ε 0 E 2 n 0 + γ ( ν i n c ) I ,

Metrics