Abstract

Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber’s infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain-switched laser diode seeded TDFA with 409 W picosecond pulses and 142 W spectrally flat supercontinuum output

Weichao Yao, Zhenhua Shao, Chongfeng Shen, Jinwen Tang, Yongguang Zhao, and Deyuan Shen
Opt. Express 27(2) 1276-1282 (2019)

Over 100  W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier

Ke Yin, Lei Li, Jinmei Yao, Bin Zhang, and Jing Hou
Opt. Lett. 40(20) 4787-4790 (2015)

Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3  μm

Linyong Yang, Bin Zhang, Ke Yin, Tianyi Wu, Yijun Zhao, and Jing Hou
Photon. Res. 6(5) 417-421 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. J. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univiersity, 2010).
  3. R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer New York Heidelberg Dordrecht London, 2016).
  4. W. Xia and X. Chen, “Recent developments in fiber-based optical frequency comb and its applications,” Meas. Sci. Technol. 27(4), 041001 (2016).
    [Crossref]
  5. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
    [Crossref] [PubMed]
  6. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24(6), 2311–2317 (2006).
    [Crossref]
  7. M. A. Powers and C. C. Davis, “Spectral LADAR: active range-resolved three-dimensional imaging spectroscopy,” Appl. Opt. 51(10), 1468–1478 (2012).
    [Crossref] [PubMed]
  8. P. S. Edwards, “Measurement and analysis of atmospheric species using a low power supercontinuum laser,” (The Pennsylvania State University, 2009).
  9. A. Manninen, T. Kääriäinen, T. Parviainen, S. Buchter, M. Heiliö, and T. Laurila, “Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source,” Opt. Express 22(6), 7172–7177 (2014).
    [Crossref] [PubMed]
  10. D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
    [Crossref]
  11. D. M. Brown, Z. Liu, and C. R. Philbrick, “Supercontinuum lidar applications for measurements of atmospheric constituents,” Proc. SPIE 6950, 69500B (2008).
    [Crossref]
  12. J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64 W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” in SPIE Defense + Security, (International Society for Optics and Photonics, 2014), paper 90881A.
  13. T. Ikawa, K. Ishii, and K. Awazu, Hyperspectral Imaging of Lipids using Near-infrared Super Continuum Light (Springer Berlin Heidelberg, 2009), pp. 630–632.
  14. G. Overton, “Supercontinuum multiplexing speeds free-space communications,” Laser Focus World 41, 35–36 (2005).
  15. S. Svanberg, G. Zhao, H. Zhang, J. Huang, M. Lian, T. Li, S. Zhu, Y. Li, Z. Duan, H. Lin, and K. Svanberg, “Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research,” Opt. Express 24(6), A515–A527 (2016).
    [Crossref] [PubMed]
  16. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
    [Crossref] [PubMed]
  17. Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
    [Crossref]
  18. M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett. 37(4), 512–514 (2012).
    [Crossref] [PubMed]
  19. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]
  20. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
    [Crossref] [PubMed]
  21. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier,” Opt. Lett. 35(17), 2991–2993 (2010).
    [Crossref] [PubMed]
  22. L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
    [Crossref] [PubMed]
  23. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]
  24. J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
    [Crossref]
  25. P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, “High spectral power density supercontinuum generation in a nonlinear fiber amplifier,” Opt. Express 15(18), 11358–11363 (2007).
    [Crossref] [PubMed]
  26. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
    [Crossref] [PubMed]
  27. R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
    [Crossref]
  28. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51(7), 834–840 (2012).
    [Crossref] [PubMed]
  29. V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum source at 1.7-2.9 μm,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper MTh1C.4.
    [Crossref]
  30. W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, “High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Express 21(17), 19732–19742 (2013).
    [Crossref] [PubMed]
  31. W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
    [Crossref]
  32. W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
    [Crossref]
  33. M. Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref] [PubMed]
  34. V. Dvoyrin and I. Sorokina, “6.8 W all-fiber supercontinuum source at 1.9–2.5 μm,” Laser Phys. Lett. 11(8), 085108 (2014).
    [Crossref]
  35. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [Crossref] [PubMed]
  36. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
    [Crossref] [PubMed]
  37. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  38. V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2 to 2.5 μm with near-diffraction-limited beam and low output variability,” Opt. Lett. 38(13), 2292–2294 (2013).
    [Crossref] [PubMed]
  39. J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38(21), 4518–4521 (2013).
    [Crossref] [PubMed]
  40. K. Yin, L. Li, J. Yao, B. Zhang, and J. Hou, “Over 100 W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier,” Opt. Lett. 40(20), 4787–4790 (2015).
    [Crossref] [PubMed]
  41. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).
  42. G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27(6), 1843–1849 (1991).
    [Crossref]
  43. S.-F. Lin and G.-R. Lin, “Dual-band wavelength tunable nonlinear polarization rotation mode-locked Erbium-doped fiber lasers induced by birefringence variation and gain curvature alteration,” Opt. Express 22(18), 22121–22132 (2014).
    [Crossref] [PubMed]
  44. A. M. Heidt, “Novel coherent supercontinuum light sources based on all-normal dispersion fibers,” (University of Stellenbosch, 2011).
  45. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  46. E. Lucas, L. Lombard, Y. Jaouën, S. Bordais, and G. Canat, “1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm,” Appl. Opt. 53(20), 4413–4419 (2014).
    [Crossref] [PubMed]
  47. G. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  48. Y. Sintov, O. Katz, Y. Glick, S. Acco, Y. Nafcha, A. Englander, and R. Lavi, “Extractable energy from ytterbium-doped high-energy pulsed fiber amplifiers and lasers,” J. Opt. Soc. Am. B 23(2), 218–230 (2006).
    [Crossref]
  49. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  50. G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
    [Crossref]
  51. The HITRAN Database, “ http://www.cfa.harvard.edu/HITRAN/ .

2016 (2)

2015 (3)

2014 (9)

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
[Crossref]

V. Dvoyrin and I. Sorokina, “6.8 W all-fiber supercontinuum source at 1.9–2.5 μm,” Laser Phys. Lett. 11(8), 085108 (2014).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

A. Manninen, T. Kääriäinen, T. Parviainen, S. Buchter, M. Heiliö, and T. Laurila, “Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source,” Opt. Express 22(6), 7172–7177 (2014).
[Crossref] [PubMed]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref] [PubMed]

E. Lucas, L. Lombard, Y. Jaouën, S. Bordais, and G. Canat, “1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm,” Appl. Opt. 53(20), 4413–4419 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

S.-F. Lin and G.-R. Lin, “Dual-band wavelength tunable nonlinear polarization rotation mode-locked Erbium-doped fiber lasers induced by birefringence variation and gain curvature alteration,” Opt. Express 22(18), 22121–22132 (2014).
[Crossref] [PubMed]

2013 (9)

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
[Crossref] [PubMed]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2 to 2.5 μm with near-diffraction-limited beam and low output variability,” Opt. Lett. 38(13), 2292–2294 (2013).
[Crossref] [PubMed]

W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, “High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Express 21(17), 19732–19742 (2013).
[Crossref] [PubMed]

M. Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
[Crossref] [PubMed]

J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38(21), 4518–4521 (2013).
[Crossref] [PubMed]

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

2012 (4)

2011 (1)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (2)

2007 (1)

2006 (3)

2005 (2)

G. Overton, “Supercontinuum multiplexing speeds free-space communications,” Laser Focus World 41, 35–36 (2005).

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

1999 (1)

1991 (1)

G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27(6), 1843–1849 (1991).
[Crossref]

Abe, M.

Absi, A.

Acco, S.

Agrawal, G. P.

G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27(6), 1843–1849 (1991).
[Crossref]

Alam, S. U.

Alexander, V. V.

Barty, C. P. J.

Beach, R. J.

Becker, M.

Boer, G. J.

Bonaccorso, F.

Book, L. D.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Bordais, S.

Brown, A. M.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

Brown, D. M.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

D. M. Brown, Z. Liu, and C. R. Philbrick, “Supercontinuum lidar applications for measurements of atmospheric constituents,” Proc. SPIE 6950, 69500B (2008).
[Crossref]

Buchter, S.

Canat, G.

Champert, P. A.

Chapman, B. H.

Chen, S.

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Chen, X.

W. Xia and X. Chen, “Recent developments in fiber-based optical frequency comb and its applications,” Meas. Sci. Technol. 27(4), 041001 (2016).
[Crossref]

Cheung, C. S.

Clarkson, W. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couderc, V.

Daniel, J. M. O.

Davis, C. C.

Dawson, J. W.

Dianov, E. M.

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupriez, P.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Dvoyrin, V.

V. Dvoyrin and I. Sorokina, “6.8 W all-fiber supercontinuum source at 1.9–2.5 μm,” Laser Phys. Lett. 11(8), 085108 (2014).
[Crossref]

Eckerle, M.

Edwards, P. S.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

Eichhorn, M.

Englander, A.

Ferrari, A. C.

Flahaut, E.

Freeman, M. J.

Geng, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Glick, Y.

Goodno, G. D.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Hasan, T.

Haxsen, F.

Heebner, J. E.

Heidt, A. M.

Heiliö, M.

Hou, J.

L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
[Crossref] [PubMed]

K. Yin, L. Li, J. Yao, B. Zhang, and J. Hou, “Over 100 W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier,” Opt. Lett. 40(20), 4787–4790 (2015).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref] [PubMed]

W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, “High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Express 21(17), 19732–19742 (2013).
[Crossref] [PubMed]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Huang, J.

Ibsen, M.

Ifarraguerri, A.

Islam, M. N.

Jackson, S. D.

Jaouën, Y.

Jeong, Y.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Jiang, S.

Jiang, Z.

Jiang, Z. F.

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

Kääriäinen, T.

Katz, O.

Ke, K.

Kelleher, E. J.

Kelly, B.

Kieleck, C.

King, T. A.

Kracht, D.

Lægsgaard, J.

Laurila, T.

Lavi, R.

Leonard, J.

Leproux, P.

Li, J.

Li, L.

Li, T.

Li, Y.

Li, Z.

Lian, M.

Liang, H.

Lin, G.-R.

Lin, H.

Lin, S.-F.

Liu, J.

Liu, K.

Liu, T.

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

Liu, Y.

Liu, Z.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

D. M. Brown, Z. Liu, and C. R. Philbrick, “Supercontinuum lidar applications for measurements of atmospheric constituents,” Proc. SPIE 6950, 69500B (2008).
[Crossref]

Liu, Z. J.

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

Lombard, L.

Lu, Q.

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Lucas, E.

Luo, H.

Manninen, A.

Mashinsky, V. M.

Masuda, H.

Mazé, G.

Medvedkov, O. I.

Meola, J.

Messerly, M. J.

Milana, S.

Morgner, U.

Morioka, T.

Nafcha, Y.

Neumann, J.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Ohara, T.

Overton, G.

G. Overton, “Supercontinuum multiplexing speeds free-space communications,” Laser Focus World 41, 35–36 (2005).

Parviainen, T.

Pax, P. H.

Phelan, R.

Philbrick, C. R.

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

D. M. Brown, Z. Liu, and C. R. Philbrick, “Supercontinuum lidar applications for measurements of atmospheric constituents,” Proc. SPIE 6950, 69500B (2008).
[Crossref]

Pioger, P. H.

Popa, D.

Popov, S. V.

Powers, M. A.

Richardson, D. J.

Rothenberg, J. E.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

Rothhardt, M.

Runcorn, T. H.

Sahu, J.

Sahu, J. K.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Shardlow, P. C.

Shen, D. Y.

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

Shi, Z.

Shverdin, M. Y.

Siders, C. W.

Sintov, Y.

Song, R.

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

Sorokina, I.

V. Dvoyrin and I. Sorokina, “6.8 W all-fiber supercontinuum source at 1.9–2.5 μm,” Laser Phys. Lett. 11(8), 085108 (2014).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Sun, Z.

Svanberg, K.

Svanberg, S.

Swiderski, J.

Szalkowski, A. S.

Takahashi, H.

Takara, H.

Tan, F.

Taylor, J. R.

Tokurakawa, M.

Tu, H.

Wandt, D.

Wang, P.

Wang, Q.

Weber, M. E.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Weiss, S. B.

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Xia, W.

W. Xia and X. Chen, “Recent developments in fiber-based optical frequency comb and its applications,” Meas. Sci. Technol. 27(4), 041001 (2016).
[Crossref]

Xiao, R.

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

Xu, J.

Xue, G.

Yamamoto, T.

Yan, Z.

Yang, L.

Yang, W.

Yang, W. Q.

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

Yao, J.

Yin, K.

Zadnik, J.

Zhang, B.

Zhang, H.

Zhang, L.

Zhang, M.

Zhao, G.

Zhou, K.

Zhou, X.

Zhu, S.

Appl. Opt. (3)

Electron. Lett. (1)

Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Y. Shen, W. A. Clarkson, and S. D. Jackson, “Power scaling of 2 µm ytterbium-sensitised thulium-doped silica fibre laser diode-pumped at 975 nm,” Electron. Lett. 41(4), 173–174 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

G. P. Agrawal, “Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 27(6), 1843–1849 (1991).
[Crossref]

J. Appl. Remote Sens. (1)

D. M. Brown, A. M. Brown, P. S. Edwards, Z. Liu, and C. R. Philbrick, “Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy,” J. Appl. Remote Sens. 8(1), 083557 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Laser Focus World (1)

G. Overton, “Supercontinuum multiplexing speeds free-space communications,” Laser Focus World 41, 35–36 (2005).

Laser Phys. Lett. (4)

R. Song, J. Hou, S. Chen, W. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett. 10(1), 015401 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett. 10(5), 055107 (2013).
[Crossref]

W. Q. Yang, B. Zhang, J. Hou, R. Xiao, R. Song, and Z. J. Liu, “Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier,” Laser Phys. Lett. 10(4), 045106 (2013).
[Crossref]

V. Dvoyrin and I. Sorokina, “6.8 W all-fiber supercontinuum source at 1.9–2.5 μm,” Laser Phys. Lett. 11(8), 085108 (2014).
[Crossref]

Meas. Sci. Technol. (1)

W. Xia and X. Chen, “Recent developments in fiber-based optical frequency comb and its applications,” Meas. Sci. Technol. 27(4), 041001 (2016).
[Crossref]

Opt. Eng. (1)

G. D. Goodno, L. D. Book, J. E. Rothenberg, M. E. Weber, and S. B. Weiss, “Narrow linewidth power scaling and phase stabilization of 2 μm thulium fiber lasers,” Opt. Eng. 50(11), 111608 (2011).
[Crossref]

Opt. Express (11)

P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, “High spectral power density supercontinuum generation in a nonlinear fiber amplifier,” Opt. Express 15(18), 11358–11363 (2007).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

S. Svanberg, G. Zhao, H. Zhang, J. Huang, M. Lian, T. Li, S. Zhu, Y. Li, Z. Duan, H. Lin, and K. Svanberg, “Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research,” Opt. Express 24(6), A515–A527 (2016).
[Crossref] [PubMed]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

A. Manninen, T. Kääriäinen, T. Parviainen, S. Buchter, M. Heiliö, and T. Laurila, “Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source,” Opt. Express 22(6), 7172–7177 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

S.-F. Lin and G.-R. Lin, “Dual-band wavelength tunable nonlinear polarization rotation mode-locked Erbium-doped fiber lasers induced by birefringence variation and gain curvature alteration,” Opt. Express 22(18), 22121–22132 (2014).
[Crossref] [PubMed]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
[Crossref] [PubMed]

L. Li, B. Zhang, K. Yin, L. Yang, and J. Hou, “1 mJ nanosecond all-fiber thulium-doped fiber laser at 2.05 μm,” Opt. Express 23(14), 18098–18105 (2015).
[Crossref] [PubMed]

W. Yang, B. Zhang, K. Yin, X. Zhou, and J. Hou, “High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Express 21(17), 19732–19742 (2013).
[Crossref] [PubMed]

M. Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

Opt. Lett. (10)

J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
[Crossref] [PubMed]

J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38(21), 4518–4521 (2013).
[Crossref] [PubMed]

K. Yin, L. Li, J. Yao, B. Zhang, and J. Hou, “Over 100 W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier,” Opt. Lett. 40(20), 4787–4790 (2015).
[Crossref] [PubMed]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref] [PubMed]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34(8), 1204–1206 (2009).
[Crossref] [PubMed]

F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier,” Opt. Lett. 35(17), 2991–2993 (2010).
[Crossref] [PubMed]

M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett. 37(4), 512–514 (2012).
[Crossref] [PubMed]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett. 37(9), 1529–1531 (2012).
[Crossref] [PubMed]

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38(10), 1615–1617 (2013).
[Crossref] [PubMed]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2 to 2.5 μm with near-diffraction-limited beam and low output variability,” Opt. Lett. 38(13), 2292–2294 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

D. M. Brown, Z. Liu, and C. R. Philbrick, “Supercontinuum lidar applications for measurements of atmospheric constituents,” Proc. SPIE 6950, 69500B (2008).
[Crossref]

Prog. Quantum Electron. (1)

J. Swiderski, “High-power mid-infrared supercontinuum sources: current status and future perspectives,” Prog. Quantum Electron. 38(5), 189–235 (2014).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (10)

J. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univiersity, 2010).

R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer New York Heidelberg Dordrecht London, 2016).

P. S. Edwards, “Measurement and analysis of atmospheric species using a low power supercontinuum laser,” (The Pennsylvania State University, 2009).

J. Meola, A. Absi, M. N. Islam, L. M. Peterson, K. Ke, M. J. Freeman, and A. I. Ifaraguerri, “Tower testing of a 64 W shortwave infrared supercontinuum laser for use as a hyperspectral imaging illuminator,” in SPIE Defense + Security, (International Society for Optics and Photonics, 2014), paper 90881A.

T. Ikawa, K. Ishii, and K. Awazu, Hyperspectral Imaging of Lipids using Near-infrared Super Continuum Light (Springer Berlin Heidelberg, 2009), pp. 630–632.

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum source at 1.7-2.9 μm,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper MTh1C.4.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

The HITRAN Database, “ http://www.cfa.harvard.edu/HITRAN/ .

A. M. Heidt, “Novel coherent supercontinuum light sources based on all-normal dispersion fibers,” (University of Stellenbosch, 2011).

G. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Gain and loss distributions used in the simulation. The TDFA is forward cladding pumped at 793 nm. The normalized excited population n2 is exponentially distributed along the fiber length with values of 0.09 at z = 0 m and 0.033 at z = 3 m.
Fig. 2
Fig. 2 Results from numerical simulation showing the (a) spectral and (b) temporal evolutions for the SC generation process in a TDFA. The relative intensity are plotted on a logarithmic scale. (c) Output SC spectrum at the end of the TDFA.
Fig. 3
Fig. 3 Spectrogram representations of the simulated SC pulse (a) at z = 1.5 m and (b) at z = 3.0 m. The inset in (a) shows a zoom view of a single soliton pulse. The relative intensity are plotted on a logarithmic scale.
Fig. 4
Fig. 4 Experimental setup. LD, laser diode. TDFA, thulium-doped fiber amplifier.
Fig. 5
Fig. 5 Evolution of the SC spectrum by increasing the pump. The powers in the legend indicate the output SC power versus the pump power.
Fig. 6
Fig. 6 Evolution of the SC power with respect to the pump power at 793 nm. The inset shows the photograph of the power meter when the output power is 203.4 W.
Fig. 7
Fig. 7 Beam profile of the SC source.
Fig. 8
Fig. 8 The SC spectrum and the atmospheric transmission spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( z , T ) z 1 2 ( g α ) A ( z , T ) k 2 i k + 1 k ! β k k A ( z , T ) T k = i γ ( 1 + τ s h o c k T ) ( A ( z , T ) + R ( T ' ) | A ( z , T T ' ) | 2 d T ' )
g ( λ s , z ) N 0 Γ ( λ s ) [ n 2 ( z ) ( σ a ( λ s ) + σ e ( λ s ) ) σ a ( λ s ) ]

Metrics