Abstract

We demonstrate direct evidence for the first realization of atomically smooth sapphire crystalline fiber cores with a surface variation of only ~1.9 Å. The hybrid glass-clad crystalline cores were grown by a laser-based fiber drawing technique. Because of the improvement in crystal fiber quality, we were able, for the first time, to comprehensively and quantitatively elucidate the correlation between fiber nanostructure and optical loss. We also experimentally demonstrated that high-temperature treatment has a significant impact on defect relaxation and promotes excellent crystallinity, and hence enables low-loss optical wave guiding. The experimentally measured propagation losses in the order of 0.01-0.1 dB/cm are the lowest ever reported among conventional Ti:sapphire channel waveguides and ultrafast-laser-inscribed waveguides, and agree well with the theory. Through experiments and numerical calculation, we have demonstrated that low threshold and high efficiency of Ti:sapphire crystal fiber lasers are possible with the atomic-level roughness, low-loss propagation, and high crystallinity of the Ti:sapphire crystalline core.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers

Mark Dubinskii, Jun Zhang, Viktor Fromzel, Youming Chen, Stuart Yin, and Claire Luo
Opt. Express 26(4) 5092-5101 (2018)

Crystalline selenium core optical fibers with low optical loss

Shuai Peng, Guowu Tang, Kaimin Huang, Qi Qian, Dongdan Chen, Qinyuan Zhang, and Zhongmin Yang
Opt. Mater. Express 7(6) 1804-1812 (2017)

Hydrothermally cladded crystalline fibers for laser applications [Invited]

Woohong Kim, Shyam Bayya, Brandon Shaw, Jason Myers, Syed N. Qadri, Rajesh Thapa, Dan Gibson, Collin Mcclain, Fred Kung, Joseph Kolis, Bradley Stadelman, and Jasbinder Sanghera
Opt. Mater. Express 9(6) 2716-2728 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
    [Crossref] [PubMed]
  2. L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
    [Crossref] [PubMed]
  3. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  4. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
    [Crossref]
  5. P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
    [Crossref] [PubMed]
  6. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  7. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  8. R. L. Byer, “Diode laser—pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
    [Crossref] [PubMed]
  9. M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
    [Crossref] [PubMed]
  10. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  11. D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
    [Crossref] [PubMed]
  12. G. T. Hohensee, R. B. Wilson, and D. G. Cahill, “Thermal conductance of metal-diamond interfaces at high pressure,” Nat. Commun. 6, 6578 (2015).
    [Crossref] [PubMed]
  13. Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
    [Crossref] [PubMed]
  14. M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
    [Crossref] [PubMed]
  15. M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
    [Crossref]
  16. B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill, A. Wang, and G. Pickrell, “Temperature dependence of sapphire fiber Raman scattering,” Opt. Lett. 40(9), 2041–2044 (2015).
    [Crossref] [PubMed]
  17. C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
    [Crossref] [PubMed]
  18. W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” J. Raman Spectrosc. 20(12), 785–788 (1989).
    [Crossref]
  19. B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J. Y. Natoli, and J. P. Chambaret, “Bulk laser-induced damage threshold of titanium-doped sapphire crystals,” Appl. Opt. 51(32), 7826–7833 (2012).
    [Crossref] [PubMed]
  20. D. C. Guo, X. D. Jiang, J. Huang, F. R. Wang, H. J. Liu, X. Xiang, G. X. Yang, W. G. Zheng, and X. T. Zu, “Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities,” Opt. Express 22(23), 29020–29030 (2014).
    [Crossref] [PubMed]
  21. W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
    [Crossref]
  22. G. Kroetz, M. H. Eickhoff, and H. Moeller, “Silicon compatible materials for harsh environment sensors,” Sens. Actuators A Phys. 74(1-3), 182–189 (1999).
    [Crossref]
  23. R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
    [Crossref]
  24. S. Kim and M. Qi, “Broadband second-harmonic phase-matching in dispersion engineered slot waveguides,” Opt. Express 24(2), 773–786 (2016).
    [Crossref] [PubMed]
  25. J. R. Ong and V. H. Chen, “Optimal geometry of nonlinear silicon slot waveguides accounting for the effect of waveguide losses,” Opt. Express 23(26), 33622–33633 (2015).
    [Crossref] [PubMed]
  26. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  27. A. Martínez, F. J. Tenorio, and J. V. Ortiz, “Electronic structure of AlO2, AlO2¯, Al3O5, and Al3O5¯ clusters,” J. Phys. Chem. A 105(50), 11291–11294 (2001).
    [Crossref]
  28. Z. Tian, Z. Yu, B. Liu, and A. Wang, “Sourceless optical fiber high temperature sensor,” Opt. Lett. 41(2), 195–198 (2016).
    [Crossref] [PubMed]
  29. A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
    [Crossref]
  30. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [Crossref] [PubMed]
  31. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
    [Crossref]
  32. L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
    [Crossref]
  33. H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
    [Crossref]
  34. C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36(7), 1287–1289 (2011).
    [Crossref] [PubMed]
  35. J. H. Kim, M. K. Chen, C. E. Yang, J. Lee, K. Shi, Z. Liu, S. S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express 16(19), 14792–14800 (2008).
    [Crossref] [PubMed]
  36. J. H. Kim, M. K. Chen, C. E. Yang, J. Lee, S. S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008).
    [Crossref] [PubMed]
  37. S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
    [Crossref]
  38. S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol. 12(5), 790–796 (1994).
    [Crossref]
  39. W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
    [Crossref]
  40. R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
    [Crossref]
  41. H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
    [Crossref]
  42. C. C. Lai, C. C. F. Chang, S. H. Chen, and J. Y. Yi, “Strain engineering at a crystal fiber laser–metal alloy interface: an ultra-sensitive crystal-fiber-based sensor,” Opt. Mater. Express 5(5), 1045–1053 (2015).
    [Crossref]
  43. C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
    [Crossref]
  44. C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
    [Crossref]
  45. V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
    [Crossref]
  46. M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
    [Crossref]
  47. A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
    [Crossref]
  48. C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
    [Crossref] [PubMed]
  49. K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3(6), 813–820 (2013).
    [Crossref]
  50. K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
    [Crossref]
  51. X. C. Tong, “Characterization methodologies of optical waveguides,” in Advanced Materials for Integrated Optical Waveguides (Springer, 2014), pp. 53–102.
  52. D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
    [Crossref]
  53. E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
    [Crossref]
  54. L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
    [Crossref] [PubMed]
  55. C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
    [Crossref]
  56. H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
    [Crossref]
  57. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  58. N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett. 36(13), 2480–2482 (2011).
    [Crossref] [PubMed]
  59. T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
    [Crossref]
  60. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [Crossref] [PubMed]
  61. C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
    [Crossref]
  62. D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
    [Crossref] [PubMed]
  63. J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
    [Crossref]
  64. L. M. B. Hickey, E. Martins, J. E. Román, W. S. Brocklesby, and J. S. Wilkinson, “Fluorescence of Ti3+ ions thermally diffused into sapphire,” Opt. Lett. 21(8), 597–599 (1996).
    [Crossref] [PubMed]
  65. T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
    [Crossref]
  66. N. Ichinose, K. Shimamura, Y. Kaneko, E. A. G. Villora, and K. Aoki, “Light Emitting Element and Method of Making Same,” U. S. Patent 7,629,615 (8th December 2009).
  67. D. M. Young, “Articles Sealed with Glass,” U. S. Patent 6,586,087 (1st July 2003).
  68. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  69. M. Polyanskiy, “Refractive index database,” http://refractiveindex.info .
  70. G. Pandraud, E. Margallo-Balbas, C. K. Yang, and P. J. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol. 29(5), 744–749 (2011).
    [Crossref]
  71. K. P. Yap, A. Delâge, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27(18), 3999–4008 (2009).
    [Crossref]
  72. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
    [Crossref]
  73. L. E. Busse, G. H. McCabe, and I. D. Aggarwal, “Wavelength dependence of the scattering loss in fluoride optical fibers,” Opt. Lett. 15(8), 423–424 (1990).
    [Crossref] [PubMed]
  74. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  75. C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37(22), 4630–4632 (2012).
    [Crossref] [PubMed]
  76. C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
    [Crossref] [PubMed]
  77. L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, J. S. Wilkinson, and A. A. Anderson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B 21(8), 1452–1462 (2004).
    [Crossref]
  78. C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
    [Crossref] [PubMed]
  79. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  80. C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
    [Crossref] [PubMed]

2016 (6)

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

S. Kim and M. Qi, “Broadband second-harmonic phase-matching in dispersion engineered slot waveguides,” Opt. Express 24(2), 773–786 (2016).
[Crossref] [PubMed]

Z. Tian, Z. Yu, B. Liu, and A. Wang, “Sourceless optical fiber high temperature sensor,” Opt. Lett. 41(2), 195–198 (2016).
[Crossref] [PubMed]

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
[Crossref]

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

2015 (8)

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

C. C. Lai, C. C. F. Chang, S. H. Chen, and J. Y. Yi, “Strain engineering at a crystal fiber laser–metal alloy interface: an ultra-sensitive crystal-fiber-based sensor,” Opt. Mater. Express 5(5), 1045–1053 (2015).
[Crossref]

J. R. Ong and V. H. Chen, “Optimal geometry of nonlinear silicon slot waveguides accounting for the effect of waveguide losses,” Opt. Express 23(26), 33622–33633 (2015).
[Crossref] [PubMed]

B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill, A. Wang, and G. Pickrell, “Temperature dependence of sapphire fiber Raman scattering,” Opt. Lett. 40(9), 2041–2044 (2015).
[Crossref] [PubMed]

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
[Crossref] [PubMed]

G. T. Hohensee, R. B. Wilson, and D. G. Cahill, “Thermal conductance of metal-diamond interfaces at high pressure,” Nat. Commun. 6, 6578 (2015).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

2014 (6)

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

D. C. Guo, X. D. Jiang, J. Huang, F. R. Wang, H. J. Liu, X. Xiang, G. X. Yang, W. G. Zheng, and X. T. Zu, “Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities,” Opt. Express 22(23), 29020–29030 (2014).
[Crossref] [PubMed]

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
[Crossref]

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (6)

K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3(6), 813–820 (2013).
[Crossref]

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
[Crossref]

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

2012 (7)

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
[Crossref] [PubMed]

B. Bussière, O. Utéza, N. Sanner, M. Sentis, G. Riboulet, L. Vigroux, M. Commandré, F. Wagner, J. Y. Natoli, and J. P. Chambaret, “Bulk laser-induced damage threshold of titanium-doped sapphire crystals,” Appl. Opt. 51(32), 7826–7833 (2012).
[Crossref] [PubMed]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
[Crossref]

C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37(22), 4630–4632 (2012).
[Crossref] [PubMed]

C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
[Crossref]

2011 (7)

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

G. Pandraud, E. Margallo-Balbas, C. K. Yang, and P. J. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol. 29(5), 744–749 (2011).
[Crossref]

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett. 36(13), 2480–2482 (2011).
[Crossref] [PubMed]

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36(7), 1287–1289 (2011).
[Crossref] [PubMed]

2010 (5)

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[Crossref] [PubMed]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

2007 (2)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[Crossref]

2006 (3)

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
[Crossref]

M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, J. S. Wilkinson, and A. A. Anderson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B 21(8), 1452–1462 (2004).
[Crossref]

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

2003 (2)

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

2001 (2)

A. Martínez, F. J. Tenorio, and J. V. Ortiz, “Electronic structure of AlO2, AlO2¯, Al3O5, and Al3O5¯ clusters,” J. Phys. Chem. A 105(50), 11291–11294 (2001).
[Crossref]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
[Crossref] [PubMed]

1999 (1)

G. Kroetz, M. H. Eickhoff, and H. Moeller, “Silicon compatible materials for harsh environment sensors,” Sens. Actuators A Phys. 74(1-3), 182–189 (1999).
[Crossref]

1998 (1)

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
[Crossref]

1996 (1)

1994 (4)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
[Crossref]

S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol. 12(5), 790–796 (1994).
[Crossref]

1990 (1)

1989 (1)

W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” J. Raman Spectrosc. 20(12), 785–788 (1989).
[Crossref]

1988 (2)

R. L. Byer, “Diode laser—pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
[Crossref]

1986 (1)

Aggarwal, I. D.

Aggarwal, R. L.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
[Crossref]

Alexander, D. R.

Alonso, D.

An, J. W.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[Crossref]

Anderson, A. A.

Apostolopoulos, V.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Badding, J. V.

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Bals, S.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Barton, J. S.

Bauters, J. F.

Bello, I.

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

Blumenthal, D. J.

Boden, S.

Böntgen, T.

C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
[Crossref]

Borca, C. N.

Borgia, C.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[Crossref]

Bourne, N. K.

M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
[Crossref] [PubMed]

Bowers, J. E.

Brambilla, G.

Brantley, C.

Brocklesby, W. S.

Burns, D.

Busse, L. E.

Bussière, B.

Byer, R. L.

R. L. Byer, “Diode laser—pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

Cahill, D. G.

G. T. Hohensee, R. B. Wilson, and D. G. Cahill, “Thermal conductance of metal-diamond interfaces at high pressure,” Nat. Commun. 6, 6578 (2015).
[Crossref] [PubMed]

Cao, Z.

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Capuj, N. E.

Cassan, E.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Cerrina, F.

Chambaret, J. P.

Chan, C. Y.

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

Chang, C. C. F.

Chen, F.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, H.

H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
[Crossref]

Chen, K. P.

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

Chen, M. H.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Chen, M. K.

Chen, M. W.

M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
[Crossref] [PubMed]

Chen, R.

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

Chen, S. H.

Chen, T. H.

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

Chen, V. H.

Cheng, N. C.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

Chi, J.

H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
[Crossref]

Commandré, M.

Corbari, C.

Dai, D.

Dandekar, D. P.

M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
[Crossref] [PubMed]

Delâge, A.

Deng, J.

Di Stefano, P. C. F.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
[Crossref]

Dietrich, V.

Dong, B.

Dong, J.

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Du, H.

H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
[Crossref]

Duffar, T.

E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
[Crossref]

Eason, R.

Eason, R. W.

Edwards, E.

Eickhoff, M. H.

G. Kroetz, M. H. Eickhoff, and H. Moeller, “Silicon compatible materials for harsh environment sensors,” Sens. Actuators A Phys. 74(1-3), 182–189 (1999).
[Crossref]

Evans, R.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Fahey, R. E.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
[Crossref]

Feng, S.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

French, P. J.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Gao, W. T.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Ghezal, E. A.

E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
[Crossref]

Gilks, D.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Gong, J.

Grillot, F.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Grivas, C.

Grundmann, M.

C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
[Crossref]

Grzelczak, M.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Gui, C.

Guo, D. C.

Guyot, Y.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Han, M.

Hara, S.

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

Haro-González, P.

Harrington, J. A.

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
[Crossref]

He, J.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

He, X.

Healy, N.

Heck, M. J. R.

Heidari, H.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Heideman, R. G.

Henderson, B.

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

Henry, S.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Hibino, Y.

S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol. 12(5), 790–796 (1994).
[Crossref]

Hickey, L. M. B.

Hill, C.

Ho, T. S.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Hohensee, G. T.

G. T. Hohensee, R. B. Wilson, and D. G. Cahill, “Thermal conductance of metal-diamond interfaces at high pressure,” Nat. Commun. 6, 6578 (2015).
[Crossref] [PubMed]

Homa, D.

Hsu, K. Y.

Hu, W.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Huang, C. M.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Huang, J.

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

D. C. Guo, X. D. Jiang, J. Huang, F. R. Wang, H. J. Liu, X. Xiang, G. X. Yang, W. G. Zheng, and X. T. Zu, “Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities,” Opt. Express 22(23), 29020–29030 (2014).
[Crossref] [PubMed]

Huang, K. Y.

Huang, M.

W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
[Crossref]

Huang, Q.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Huang, S. L.

K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3(6), 813–820 (2013).
[Crossref]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
[Crossref] [PubMed]

Huang, S. Y.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Janz, S.

Jaque, D.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jheng, D. Y.

K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3(6), 813–820 (2013).
[Crossref]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

Ji, K. D.

Jia, W.

W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” J. Raman Spectrosc. 20(12), 785–788 (1989).
[Crossref]

Jiang, H.

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Jiang, L.

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

Jiang, X. D.

John, D.

Kan, J. A.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

Ke, C. P.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Kemp, A. J.

Kepaptsoglou, D.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Kim, J. H.

Kim, S.

Kimerling, L. C.

Kodama, N.

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Koshizaki, N.

J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
[Crossref]

Kozodoy, R. L.

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
[Crossref]

Kracht, D.

Kraus, H.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Kroetz, G.

G. Kroetz, M. H. Eickhoff, and H. Moeller, “Silicon compatible materials for harsh environment sensors,” Sens. Actuators A Phys. 74(1-3), 182–189 (1999).
[Crossref]

Kuerbanjiang, B.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lagonigro, L.

Lagoudakis, P. G.

Lai, C. C.

C. C. Lai, C. C. F. Chang, S. H. Chen, and J. Y. Yi, “Strain engineering at a crystal fiber laser–metal alloy interface: an ultra-sensitive crystal-fiber-based sensor,” Opt. Mater. Express 5(5), 1045–1053 (2015).
[Crossref]

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3(6), 813–820 (2013).
[Crossref]

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
[Crossref] [PubMed]

Lally, E.

Lamontagne, B.

Lan, X.

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

Lange, M.

C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
[Crossref]

Lapointe, J.

Lari, L.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Laval, S.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Laversenne, L.

Lazarov, V. K.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Lebbou, K.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
[Crossref]

Lee, J.

Lee, K. K.

Lee, S. T.

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

Leinse, A.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Li, C.

Liao, Y. H.

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

Lim, D. R.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Lin, M. Y.

Lin, Y. S.

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

Lin, Z. W.

Linevsky, M. J.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
[Crossref]

Liu, B.

Liu, H.

H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
[Crossref]

Liu, H. J.

Liu, L.

Liu, Z.

Liz-Marzan, L. M.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Lo, C. Y.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Lu, W.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Lu, Y.

Luo, C.

Lynch, A.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Ma, Y.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Ma, Y. R.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Margallo-Balbas, E.

Mark, F. F.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
[Crossref]

Martín, I. R.

Martín, L. L.

Martínez, A.

A. Martínez, F. J. Tenorio, and J. V. Ortiz, “Electronic structure of AlO2, AlO2¯, Al3O5, and Al3O5¯ clusters,” J. Phys. Chem. A 105(50), 11291–11294 (2001).
[Crossref]

Martins, E.

Matsuzaki, K.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

May, R. G.

May-Smith, T.

McCabe, G. H.

McCauley, J. W.

M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
[Crossref] [PubMed]

McKenna, K.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Meng, X. M.

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

Mennemann, K.

Mikhailik, V. B.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Moeller, H.

G. Kroetz, M. H. Eickhoff, and H. Moeller, “Silicon compatible materials for harsh environment sensors,” Sens. Actuators A Phys. 74(1-3), 182–189 (1999).
[Crossref]

Moretti, P.

Moulton, P. F.

Murray, T.

W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
[Crossref]

Natoli, J. Y.

Navarro-Urrios, D.

Nedelkoski, Z.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Nehari, A.

E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
[Crossref]

Neumann, J.

Nguyen, D. H.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

Nubling, R. K.

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
[Crossref]

Oda, K.

S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol. 12(5), 790–796 (1994).
[Crossref]

Ohodnicki, P.

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

Ong, J. R.

Ortiz, J. V.

A. Martínez, F. J. Tenorio, and J. V. Ortiz, “Electronic structure of AlO2, AlO2¯, Al3O5, and Al3O5¯ clusters,” J. Phys. Chem. A 105(50), 11291–11294 (2001).
[Crossref]

Pandraud, G.

Paniccia, M.

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

Pascal, D.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Pask, H. M.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Pastoriza-Santos, I.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Peacock, A. C.

Perez-Juste, J.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Pérez-Rodríguez, C.

Pickrell, G.

Piper, J. A.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Pollnau, M.

Poole, Z. L.

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

Qi, M.

Ramasse, Q.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Raml, C.

Reichard, K.

Riboulet, G.

Richardson, D. J.

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

Román, J. E.

Roth, P. W.

Ruffin, P.

Ryu, J. H.

J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
[Crossref]

Sanchez, A.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
[Crossref]

Sanchez-Iglesias, A.

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Sanner, N.

Sazio, P. J. A.

Schmid, J. H.

Seng, H. L.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

Sentis, M.

Shao, X.

H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
[Crossref]

Shepherd, D.

Shepherd, D. P.

Shi, H.

H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
[Crossref]

Shi, K.

Shim, K. B.

J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
[Crossref]

Shin, J.

Shr, R. C.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

Solenthaler, C.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[Crossref]

Song, J.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Sova, R. M.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
[Crossref]

Sparks, J. R.

Spolenak, R.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[Crossref]

Spratt, W.

W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
[Crossref]

Steinke, M.

Strauss, A. J.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
[Crossref]

Sum, T. C.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

Susaki, T.

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Suzuki, S.

S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol. 12(5), 790–796 (1994).
[Crossref]

Syrett, B. A.

Tenorio, F. J.

A. Martínez, F. J. Tenorio, and J. V. Ortiz, “Electronic structure of AlO2, AlO2¯, Al3O5, and Al3O5¯ clusters,” J. Phys. Chem. A 105(50), 11291–11294 (2001).
[Crossref]

Thomas, M. E.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
[Crossref]

Tian, F.

H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
[Crossref]

Tian, Y.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Tian, Z.

Tien, M. C.

Tjiu, J. W.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

Tsai, C. N.

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

Tsai, H. J.

Tsybulskyi, V.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Utéza, O.

Vázquez de Aldana, J. R.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Verdier, M. A.

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

Vigroux, L.

Vivien, L.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Wagner, F.

Waldron, P.

Wang, A.

Wang, C. K.

Wang, F. R.

Wang, H.

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

Wang, J.

Wang, S. C.

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

Wang, Y.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Watt, F.

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

Wen, B.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Wermelinger, T.

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[Crossref]

Wessels, P.

Wilkinson, J. S.

Wilson, R. B.

G. T. Hohensee, R. B. Wilson, and D. G. Cahill, “Thermal conductance of metal-diamond interfaces at high pressure,” Nat. Commun. 6, 6578 (2015).
[Crossref] [PubMed]

Wu, Y.

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

Xia, C.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Xia, H.

W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
[Crossref]

Xiang, X.

Xiao, H.

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

Xu, B.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Xu, X.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Yamaga, M.

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

Yan, A.

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

Yanagisawa, M.

S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol. 12(5), 790–796 (1994).
[Crossref]

Yang, C. E.

Yang, C. K.

Yang, G. X.

Yang, M. H.

Yang, Q.

Yang, R.

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Yap, K. P.

Yeh, P.

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

Yen, W. M.

W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” J. Raman Spectrosc. 20(12), 785–788 (1989).
[Crossref]

Yi, J. Y.

Yin, S. S.

Yoon, J. W.

J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
[Crossref]

Yosida, T.

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

Yu, D.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Yu, Z.

Yuan, L.

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Zaghloul, M.

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

Zhan, C.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[Crossref]

Zhang, W. J.

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

Zhang, X.

Zhao, Z.

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Zheng, W. G.

Zhong, J.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Zhou, D.

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Zhu, D.

H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
[Crossref]

Zhuo, W. J.

Zu, X. T.

ACS Appl. Mater. Interfaces (1)

C. C. Lai, W. T. Gao, D. H. Nguyen, Y. R. Ma, N. C. Cheng, S. C. Wang, J. W. Tjiu, and C. M. Huang, “Toward single-mode active crystal fibers for next-generation high-power fiber devices,” ACS Appl. Mater. Interfaces 6(16), 13928–13936 (2014).
[Crossref] [PubMed]

ACS Omega (2)

H. Liu, D. Zhu, H. Shi, and X. Shao, “Fabrication of a contamination-free interface between graphene and TiO2 single crystals,” ACS Omega 1(2), 168–176 (2016).
[Crossref]

M. Grzelczak, A. Sanchez-Iglesias, H. Heidari, S. Bals, I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silver ions direct twin-plane formation during the overgrowth of single-crystal gold nanoparticles,” ACS Omega 1(2), 177–181 (2016).
[Crossref]

Acta Mater. (1)

T. Wermelinger, C. Borgia, C. Solenthaler, and R. Spolenak, “3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals,” Acta Mater. 55(14), 4657–4665 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. Kan, and F. Watt, “Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope,” Appl. Phys. Lett. 85(8), 1398–1400 (2004).
[Crossref]

W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, “Oriented single-crystal diamond cones and their arrays,” Appl. Phys. Lett. 82(16), 2622–2624 (2003).
[Crossref]

C. P. Dietrich, M. Lange, T. Böntgen, and M. Grundmann, “The corner effect in hexagonal whispering gallery microresonators,” Appl. Phys. Lett. 101(14), 141116 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. H. Ryu, J. W. Yoon, K. B. Shim, and N. Koshizaki, “Room-temperature deposition of nanocrystalline PbWO4 thin films by pulsed laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 181–185 (2006).
[Crossref]

Cryst. Growth Des. (1)

E. A. Ghezal, A. Nehari, K. Lebbou, and T. Duffar, “Observation of gas bubble incorporation during micropulling-down growth of sapphire,” Cryst. Growth Des. 12(11), 5715–5719 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:A12O3,” IEEE J. Quantum Electron. 24(6), 995–1002 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, “Sapphire fiber optical hydrogen sensors for high-temperature environments,” IEEE Photonics Technol. Lett. 28(1), 47–50 (2016).
[Crossref]

L. Yuan, X. Lan, J. Huang, H. Wang, L. Jiang, and H. Xiao, “Comparison of silica and sapphire fiber SERS probes fabricated by a femtosecond laser,” IEEE Photonics Technol. Lett. 26(13), 1299–1302 (2014).
[Crossref]

K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett. 24(10), 854–856 (2012).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Infrared Phys. Technol. (1)

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39(4), 251–261 (1998).
[Crossref]

J. Appl. Phys. (3)

W. Spratt, M. Huang, T. Murray, and H. Xia, “Optical mode confinement and selection in single-crystal sapphire fibers by formation of nanometer scale cavities with hydrogen ion implantation,” J. Appl. Phys. 114(20), 203501 (2013).
[Crossref]

V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, “Studies of concentration dependences in the luminescence of Ti-doped Al2O3,” J. Appl. Phys. 109(5), 053116 (2011).
[Crossref]

M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, “Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in A12O3,” J. Appl. Phys. 75(2), 1111–1117 (1994).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

A. Martínez, F. J. Tenorio, and J. V. Ortiz, “Electronic structure of AlO2, AlO2¯, Al3O5, and Al3O5¯ clusters,” J. Phys. Chem. A 105(50), 11291–11294 (2001).
[Crossref]

J. Phys. Chem. C (3)

C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, “Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber,” J. Phys. Chem. C 117(34), 17725–17730 (2013).
[Crossref]

C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, “Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior,” J. Phys. Chem. C 116(49), 26052–26059 (2012).
[Crossref]

C. C. Lai, S. C. Wang, Y. S. Lin, T. H. Chen, and S. L. Huang, “Near-field spectroscopy of broadband emissions from γ-Al2O3 nanocrystals in Cr-doped double-clad fibers,” J. Phys. Chem. C 115(41), 20289–20294 (2011).
[Crossref]

J. Raman Spectrosc. (1)

W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” J. Raman Spectrosc. 20(12), 785–788 (1989).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nat. Commun. (1)

G. T. Hohensee, R. B. Wilson, and D. G. Cahill, “Thermal conductance of metal-diamond interfaces at high pressure,” Nat. Commun. 6, 6578 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, “Dynamic plasticity and failure of high-purity alumina under shock loading,” Nat. Mater. 5(8), 614–618 (2006).
[Crossref] [PubMed]

Nat. Photonics (5)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Nature (1)

Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, “Nanotwinned diamond with unprecedented hardness and stability,” Nature 510(7504), 250–253 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[Crossref]

Opt. Express (12)

J. H. Kim, M. K. Chen, C. E. Yang, J. Lee, S. S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008).
[Crossref] [PubMed]

J. H. Kim, M. K. Chen, C. E. Yang, J. Lee, K. Shi, Z. Liu, S. S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express 16(19), 14792–14800 (2008).
[Crossref] [PubMed]

C. Grivas, D. Shepherd, T. May-Smith, R. Eason, and M. Pollnau, “Single-transverse-mode Ti:sapphire rib waveguide laser,” Opt. Express 13(1), 210–215 (2005).
[Crossref] [PubMed]

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

C. C. Lai, N. C. Cheng, C. K. Wang, J. W. Tjiu, M. Y. Lin, and S. Y. Huang, “Simple and efficient defect-tailored fiber-based UV-VIS broadband white light generation,” Opt. Express 21(12), 14606–14617 (2013).
[Crossref] [PubMed]

D. C. Guo, X. D. Jiang, J. Huang, F. R. Wang, H. J. Liu, X. Xiang, G. X. Yang, W. G. Zheng, and X. T. Zu, “Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities,” Opt. Express 22(23), 29020–29030 (2014).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
[Crossref] [PubMed]

L. Liu, J. Dong, and X. Zhang, “Chip-integrated all-optical 4-bit Gray code generation based on silicon microring resonators,” Opt. Express 23(16), 21414–21423 (2015).
[Crossref] [PubMed]

J. R. Ong and V. H. Chen, “Optimal geometry of nonlinear silicon slot waveguides accounting for the effect of waveguide losses,” Opt. Express 23(26), 33622–33633 (2015).
[Crossref] [PubMed]

S. Kim and M. Qi, “Broadband second-harmonic phase-matching in dispersion engineered slot waveguides,” Opt. Express 24(2), 773–786 (2016).
[Crossref] [PubMed]

Opt. Lett. (12)

Z. Tian, Z. Yu, B. Liu, and A. Wang, “Sourceless optical fiber high temperature sensor,” Opt. Lett. 41(2), 195–198 (2016).
[Crossref] [PubMed]

B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill, A. Wang, and G. Pickrell, “Temperature dependence of sapphire fiber Raman scattering,” Opt. Lett. 40(9), 2041–2044 (2015).
[Crossref] [PubMed]

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[Crossref] [PubMed]

C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36(7), 1287–1289 (2011).
[Crossref] [PubMed]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[Crossref] [PubMed]

C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37(22), 4630–4632 (2012).
[Crossref] [PubMed]

N. Healy, L. Lagonigro, J. R. Sparks, S. Boden, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Opt. Lett. 36(13), 2480–2482 (2011).
[Crossref] [PubMed]

C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett. 31(23), 3450–3452 (2006).
[Crossref] [PubMed]

C. C. Lai, H. J. Tsai, K. Y. Huang, K. Y. Hsu, Z. W. Lin, K. D. Ji, W. J. Zhuo, and S. L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 33(24), 2919–2921 (2008).
[Crossref] [PubMed]

L. E. Busse, G. H. McCabe, and I. D. Aggarwal, “Wavelength dependence of the scattering loss in fluoride optical fibers,” Opt. Lett. 15(8), 423–424 (1990).
[Crossref] [PubMed]

L. M. B. Hickey, E. Martins, J. E. Román, W. S. Brocklesby, and J. S. Wilkinson, “Fluorescence of Ti3+ ions thermally diffused into sapphire,” Opt. Lett. 21(8), 597–599 (1996).
[Crossref] [PubMed]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
[Crossref] [PubMed]

Opt. Mater. (1)

D. Zhou, C. Xia, Y. Guyot, J. Zhong, X. Xu, S. Feng, W. Lu, J. Song, and K. Lebbou, “Growth and spectroscopic properties of Ti-doped sapphire single-crystal fibers,” Opt. Mater. 47, 495–500 (2015).
[Crossref]

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Proc. SPIE (2)

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
[Crossref]

H. Chen, F. Tian, J. Chi, and H. Du, “Sapphire fiber optic-based surface-enhanced Raman scattering by direct and evanescent-field excitation,” Proc. SPIE 9098, 90980T (2014).
[Crossref]

Sci. Rep. (1)

D. Gilks, Z. Nedelkoski, L. Lari, B. Kuerbanjiang, K. Matsuzaki, T. Susaki, D. Kepaptsoglou, Q. Ramasse, R. Evans, K. McKenna, and V. K. Lazarov, “Atomic and electronic structure of twin growth defects in magnetite,” Sci. Rep. 6, 20943 (2016).
[Crossref] [PubMed]

Science (2)

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

R. L. Byer, “Diode laser—pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

G. Kroetz, M. H. Eickhoff, and H. Moeller, “Silicon compatible materials for harsh environment sensors,” Sens. Actuators A Phys. 74(1-3), 182–189 (1999).
[Crossref]

Thin Solid Films (1)

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Other (4)

X. C. Tong, “Characterization methodologies of optical waveguides,” in Advanced Materials for Integrated Optical Waveguides (Springer, 2014), pp. 53–102.

M. Polyanskiy, “Refractive index database,” http://refractiveindex.info .

N. Ichinose, K. Shimamura, Y. Kaneko, E. A. G. Villora, and K. Aoki, “Light Emitting Element and Method of Making Same,” U. S. Patent 7,629,615 (8th December 2009).

D. M. Young, “Articles Sealed with Glass,” U. S. Patent 6,586,087 (1st July 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of the glass cladding process. (b) Optical images of polished end view of a borosilicate-glass-clad sapphire-crystal-core fiber. (c) Enlarged image of (b). (d) Corresponding as-grown side view of (b). (e) Schematic of the c-axis sapphire, manifesting a hexagonal close packing arrangement of sapphire crystalline core, as shown in (c).
Fig. 2
Fig. 2 HRTEM (a) lattice image of the sapphire-crystal-core/borosilicate-glass-clad interface without annealing treatment, showing the abundant defects nearby the interface (marked by arrows). The inset in (a) presents a magnified view of the defective region denoted by the square. The inset scale bar is 1 nm. (b), (c) Fourier transform and inverse Fourier transform, respectively, from the square region in (a) showing several (0002) misfit dislocations (marked by ⊥). Note that the double diffractions are denoted by D in (b). The scale bar in (c) is 1 nm. (d) Shows the atomically smooth core/clad interface due to effective annihilation of structural defects after thermal treatment at 1650 °C for 3 h, in contrast to the rather corrugated interface in (a). (e) False-colored high-magnification HRTEM image of the annealed core/clad interface. The scale bar is 2 nm.
Fig. 3
Fig. 3 Representative Raman spectra. (a) Full-range spectra of glass-clad sapphire-core fibers with and without annealing, together with a bulk sapphire rod for comparison, showing seven phonon modes at ~385, 422, 435, 454, 583, 650, and 755 cm−1. (b) Close-up spectra of (a) showing the linewidth narrowing characteristics, indicating the improvement of crystalline core quality with thermal annealing.
Fig. 4
Fig. 4 Corresponding autocorrelation functions (a) before annealing and (b) after annealing. The extracted values for σ and Lc derived from the fitted exponential curves are 5.350 Å and 2.4938 nm in (a) and 1.933 Å and 1.0660 nm in (b), respectively. Both small σ and small Lc are necessary to obtain very low propagation losses in glass-clad crystal-core fibers, reflecting the obvious superiority of the LHPG-based fiber drawing technique.
Fig. 5
Fig. 5 Contour of propagation loss (α) for (a) all the guided modes at 800 nm calculated against the correlation length (Lc) and roughness (σ), showing a dependence of α on Lc is more severe for a larger σ. (b) Magnified view of (a) showing the effectiveness of high-temperature treatment that reduces the propagation loss from 1.236 to 0.069 dB/cm.
Fig. 6
Fig. 6 Contour of propagation loss (α) for (a) all the guided modes at 532 nm calculated against the correlation length (Lc) and roughness (σ). As expected, α increases rapidly as λ decreases when compared to Fig. 5. (b) Magnified view of (a) showing the effectiveness of high-temperature treatment that reduces the propagation loss from 10.015 to 0.560 dB/cm.
Fig. 7
Fig. 7 Propagation loss as functions of optical wavelength and annealing effect for (a) all guided modes and (b) LP01 fundamental mode. Loss increases significantly as the wavelength is decreased, since the Lc of the interfacial roughness is more comparable to the wavelength. The error bars in (a) represent standard deviations of quintuplicate measurements. The propagation losses of the annealed and non-annealed crystal fibers were measured using the cutback method [51].
Fig. 8
Fig. 8 Numerical simulations of the Ti:sapphire crystalline core fiber laser. The performance of an 8-cm Ti:sapphire crystal fiber with a coated output reflectance of 30% is computed for (a) the slope efficiency of 42.3% with (b) a threshold of ~770 mW at room temperature.
Fig. 9
Fig. 9 (a) Calculated propagation loss for a fundamental mode LP01 in a 40-μm-diameter sapphire crystalline core. (b) Dependency of α on Lc for σ = 0.1933 nm showing a maximum value at Lc ≈300 nm (marked by the dashed lines) followed by a decrease as Lc increases.
Fig. 10
Fig. 10 (a) Calculated propagation loss for a fundamental mode LP01 in a 40-μm-diameter sapphire crystalline core. (b) Dependency of α on Lc for σ = 0.1933 nm showing a maximum value at Lc ≈200 nm (marked by the dashed lines) followed by a decrease as Lc increases.
Fig. 11
Fig. 11 Numerical simulations of time-dependent (a) N2 and (b) Ic evolutions for the Ti:sapphire crystal fiber laser.
Fig. 12
Fig. 12 Numerical simulations of time-dependent (a) N2 and (b) Ic evolutions for the Ti:sapphire crystal fiber ASE.

Tables (1)

Tables Icon

Table 1 Summary of Propagation Loss Dependence on Optical Wavelength and Annealing Effect

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α= σ 2 2 k 0 d 4 n 1 gf,
α= 2 σ 2 L c 0 π dθ (1/ L c ) 2 + (β n 2 k 0 cosθ) 2 ,
d N 2 (t) dt = σ a λ p I p hc N g (t) σ e λ L I c (t) hc N 2 (t) N 2 (t) τ f
d I c (t) dt = I c (t)[ c σ e M n N 2 (t) 1 t c ],
I p = P in η in exp( α PL pump L)[1exp( α p0 L)] η out /π r 2
t c =2nL c 1 {1[ R 1 R 2 exp(2( α PL sig + α p0 /FOM)L)]} 1 .

Metrics