Abstract

We report a fast response microfluidic Fabry–Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer

Ming Deng, Chang-Ping Tang, Tao Zhu, Yun-Jiang Rao, Lai-Cai Xu, and Meng Han
Appl. Opt. 49(9) 1593-1598 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  2. M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
    [Crossref] [PubMed]
  3. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  4. X. Zhang and W. Peng, “Bent-fiber intermodal interference based dual-channel fiber optic refractometer,” Opt. Express 23(6), 7602–7610 (2015).
    [Crossref] [PubMed]
  5. S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
    [Crossref]
  6. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [Crossref] [PubMed]
  7. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
    [Crossref] [PubMed]
  8. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  9. C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
    [Crossref] [PubMed]
  10. C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, and H. Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
    [Crossref] [PubMed]
  11. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [Crossref] [PubMed]
  12. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref] [PubMed]
  13. J. Tian, Y. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers,” Opt. Express 21(5), 6633–6639 (2013).
    [Crossref] [PubMed]
  14. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  15. D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  16. C. Wu, Z. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing,” Opt. Express 22(18), 21757–21766 (2014).
    [Crossref] [PubMed]
  17. R. H. Wang and X. G. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry–Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
    [Crossref]
  18. J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett. 37(22), 4672–4674 (2012).
    [Crossref] [PubMed]
  19. Y. J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
    [Crossref]
  20. Y. J. Lu, M. Han, and J. J. Tian, “Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure,” IEEE Photonics Technol. Lett. 26(8), 757–760 (2014).
    [Crossref]
  21. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [Crossref] [PubMed]

2015 (3)

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

R. H. Wang and X. G. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry–Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

X. Zhang and W. Peng, “Bent-fiber intermodal interference based dual-channel fiber optic refractometer,” Opt. Express 23(6), 7602–7610 (2015).
[Crossref] [PubMed]

2014 (3)

C. Wu, Z. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing,” Opt. Express 22(18), 21757–21766 (2014).
[Crossref] [PubMed]

Y. J. Lu, M. Han, and J. J. Tian, “Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure,” IEEE Photonics Technol. Lett. 26(8), 757–760 (2014).
[Crossref]

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, and H. Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (1)

2010 (2)

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[Crossref] [PubMed]

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (3)

2005 (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2004 (1)

Auguste, J. L.

Bang, O.

Bjarklev, A.

Blanc, W.

Carlsen, A.

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Daimon, M.

Deng, M.

Y. J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Dewynter, V.

Duan, D. W.

Duan, D.-W.

Y. J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Dussardier, B.

Farrell, G.

Fassi Fehri, M.

Ferdinand, P.

Fink, T.

Folkenberg, J. R.

Gauvreau, B.

Guan, B. O.

Guo, F.

Han, M.

Han, Y.

Hansen, T. P.

Hassani, A.

He, S. L.

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

Hoiby, P. E.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Jensen, J. B.

Kabashin, A.

Laffont, G.

Lee, E. H.

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, H.

Li, Y.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liu, Z.

Lu, C.

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, and H. Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Lu, Y.

Lu, Y. J.

Y. J. Lu, M. Han, and J. J. Tian, “Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure,” IEEE Photonics Technol. Lett. 26(8), 757–760 (2014).
[Crossref]

Masumura, A.

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pagnoux, D.

Pedersen, L. H.

Peng, W.

Phan Huy, M. C.

Qiao, X. G.

R. H. Wang and X. G. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry–Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

Rao, Y. J.

D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

Y. J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Riishede, J.

Rindorf, L.

Roy, P.

Semenova, Y.

Skorobogatiy, M. A.

Tam, H. Y.

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Tian, J.

Tian, J. J.

Y. J. Lu, M. Han, and J. J. Tian, “Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure,” IEEE Photonics Technol. Lett. 26(8), 757–760 (2014).
[Crossref]

Tsai, H. L.

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Tse, M. L. V.

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, and H. Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Wang, P.

Wang, R. H.

R. H. Wang and X. G. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry–Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

Wei, T.

Wu, C.

Wu, Q.

Wu, S. N.

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

Wu, W. T.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Xiao, H.

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yan, G. F.

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Zhang, A. P.

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, and H. Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

C. Wu, Z. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing,” Opt. Express 22(18), 21757–21766 (2014).
[Crossref] [PubMed]

Zhang, Q.

Zhang, X.

Zhou, B.

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

Zhu, T.

D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

Y. J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Analyst (Lond.) (1)

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, A. P. Zhang, C. Lu, and H. Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. N. Wu, G. F. Yan, B. Zhou, E. H. Lee, and S. L. He, “Open-Cavity Fabry–Perot Interferometer Based on Etched Side-Hole Fiber for Microfluidic Sensing,” IEEE Photonics Technol. Lett. 27(17), 1813–1816 (2015).
[Crossref]

R. H. Wang and X. G. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry–Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

Y. J. Lu, M. Han, and J. J. Tian, “Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure,” IEEE Photonics Technol. Lett. 26(8), 757–760 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (6)

Sens. Actuators A Phys. (1)

Y. J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148(1), 33–38 (2008).
[Crossref]

Sensors (Basel) (1)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of proposed sensor structure; (b) Microscope picture of the cross section of the CPCF.
Fig. 2
Fig. 2 (a)~(d) Schematic diagrams and microscope photographs of fabrication processes of CPCF and sensor head; (e) Micro photograph of proposed sensor; (f) Reflection spectrum of a fabricated sensor in air.
Fig. 3
Fig. 3 (a)~(d) Microscope photographs of fabricated sensor head with different weights as 8, 10, 20 and 30g, respectively; (e)~(h) Reflection spectra for fabricated sensor1~sensor4 in air, respectively.
Fig. 4
Fig. 4 The experimental setup for liquid sample RI measurement with the proposed sensor.
Fig. 5
Fig. 5 Reflection spectra of sensor with different concentration of ethanol-water solution; (b) The relationship between RI change and valley wavelength shift. DW: distilled water
Fig. 6
Fig. 6 (a) The experimental setup for testing the measuring speed of proposed sensor, (b) The sensor reflection spectra for air, distilled water and ethanol, respectively. DW: distilled water
Fig. 7
Fig. 7 (a) and (b) The response time of the sensor for being immersed into and lifted out of ethanol, respectively; (c) and (d) The response time of the sensor for being immersed into and lifted out of distilled water, respectively.
Fig. 8
Fig. 8 (a) Spectra of the sensor according to temperature variations. (b) Wavelength dependence with temperature.
Fig. 9
Fig. 9 Sensor repeatability test. (a) Reflection spectra of the sensor for several measurements of distilled water; (b) Wavelength shifts for several measurements of distilled water.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos( 4πnL λ + ϕ 0 )
FSR λ 1 λ 2 / 2nL ,

Metrics