Abstract

A reflection-mode Bessel-beam photoacoustic microscope (BB-PAM) is developed for the in vivo imaging of cerebral capillaries with extended depth of field (DoF). The non-diffraction characteristic of Bessel beams means that a larger DoF can be expected in the PAM compared to that using a Gaussian beam (GB). In our system, we generate the Bessel beam using an axicon and an annular mask. The lateral resolution of the system is estimated to be 1.6 μm. The DoF is measured to be 483 μm, and this is verified by imaging a carbon fiber network. The DoF of BB-PAM is about 7 times that of a GB-PAM. The cerebral vasculature of an open-skull mouse is imaged using the developed BB-PAM to demonstrate its in vivo imaging capability and advantages over GB-PAM.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blind-deconvolution optical-resolution photoacoustic microscopy in vivo

Jianhua Chen, Riqiang Lin, Huina Wang, Jing Meng, Hairong Zheng, and Liang Song
Opt. Express 21(6) 7316-7327 (2013)

Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective

Hui Wang, Xiaoquan Yang, Yanyan Liu, Bowen Jiang, and Qingming Luo
Opt. Express 21(20) 24210-24218 (2013)

Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens

Xiaoquan Yang, Bowen Jiang, Xianlin Song, Jianshuang Wei, and Qingming Luo
Opt. Express 25(7) 7349-7357 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
    [Crossref] [PubMed]
  2. L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
    [Crossref] [PubMed]
  3. Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
    [Crossref] [PubMed]
  4. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  5. S. Hu, P. Yan, K. Maslov, J. M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
    [Crossref] [PubMed]
  6. L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
    [Crossref] [PubMed]
  7. E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt. 14(2), 020502 (2009).
    [Crossref] [PubMed]
  8. V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
    [Crossref] [PubMed]
  9. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  10. B. Li, H. Qin, S. Yang, and D. Xing, “In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens,” Opt. Express 22(17), 20130–20137 (2014).
    [Crossref] [PubMed]
  11. P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
    [Crossref] [PubMed]
  12. J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
    [Crossref] [PubMed]
  13. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
    [Crossref]
  14. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [Crossref] [PubMed]
  15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  16. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [Crossref] [PubMed]
  17. S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2, 692 (2012).
    [Crossref] [PubMed]
  18. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
    [Crossref] [PubMed]
  19. G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
    [Crossref] [PubMed]
  20. J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
    [Crossref] [PubMed]
  21. T. J. Holmes, S. Bhattacharyya, J. A. Cooper, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of biological confocal microscopy. James B. Pawley, ed. (Plenum, 1995).
  22. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
    [Crossref]
  23. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
    [Crossref]
  24. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36(8), 1766–1775 (1997).
    [Crossref] [PubMed]

2015 (2)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (4)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2, 692 (2012).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
[Crossref] [PubMed]

2011 (4)

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

2010 (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

2009 (2)

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt. 14(2), 020502 (2009).
[Crossref] [PubMed]

S. Hu, P. Yan, K. Maslov, J. M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
[Crossref] [PubMed]

2008 (2)

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[Crossref] [PubMed]

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

2006 (1)

1997 (1)

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

1972 (1)

Andrews, M.

Arbeit, J. M.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Bachmann, A. H.

Barbour, D. L.

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

Bera, S.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2, 692 (2012).
[Crossref] [PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Biggs, D. S. C.

Chang, J. Y.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Chen, Y. Y.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Choi, J. M.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

De Koninck, Y.

Deng, Y.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Duong, T. Q.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Forbrich, A.

Fraser, S. E.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gong, H.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Hajireza, P.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

S. Hu, P. Yan, K. Maslov, J. M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
[Crossref] [PubMed]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Jiang, B.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Koos, D. S.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Kovalski, J.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Lai, H. Y.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Lasser, T.

Lee, J. M.

Lee, K. S.

Leitgeb, R. A.

Li, B.

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

Li, M. L.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Liao, L. D.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Lin, C. T.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

Maslov, K.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt. 14(2), 020502 (2009).
[Crossref] [PubMed]

S. Hu, P. Yan, K. Maslov, J. M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
[Crossref] [PubMed]

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
[Crossref] [PubMed]

McCarthy, N.

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Mondal, P. P.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2, 692 (2012).
[Crossref] [PubMed]

Noordam, C.

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref] [PubMed]

Oladipupo, S.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Puckett, E. R.

Purnapatra, S. B.

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2, 692 (2012).
[Crossref] [PubMed]

Qin, H.

Richardson, W. H.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Rolland, J. P.

Rowland, K. J.

Santeford, A.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Shi, J.

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref] [PubMed]

Shih, Y. Y. I.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Shohet, R.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Sohn, R. E.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Stein, E. W.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt. 14(2), 020502 (2009).
[Crossref] [PubMed]

Steinmann, L.

Supatto, W.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Thériault, G.

Truong, T. V.

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Tsang, S.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Tsytsarev, V.

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

Villiger, M.

Wang, H.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref] [PubMed]

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt. 14(2), 020502 (2009).
[Crossref] [PubMed]

S. Hu, P. Yan, K. Maslov, J. M. Lee, and L. V. Wang, “Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy,” Opt. Lett. 34(24), 3899–3901 (2009).
[Crossref] [PubMed]

Wang, P. H.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Warner, B. W.

Wong, T. T.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wu, R.

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

Xing, D.

Xu, G.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Yan, P.

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yang, S.

Yang, X.

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, “Double-illumination photoacoustic microscopy,” Opt. Lett. 37(4), 659–661 (2012).
[Crossref] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

Zemp, R. J.

P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
[Crossref] [PubMed]

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

Zhang, H. F.

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79(6), 745–754 (1974).
[Crossref]

J. Biomed. Opt. (4)

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref] [PubMed]

Y. Liu, X. Yang, H. Gong, B. Jiang, H. Wang, G. Xu, and Y. Deng, “Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope,” J. Biomed. Opt. 18(7), 076007 (2013).
[Crossref] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt. 14(2), 020502 (2009).
[Crossref] [PubMed]

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, “Photoacoustic microscopy of microvascular responses to cortical electrical stimulation,” J. Biomed. Opt. 16(7), 076002 (2011).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

L. D. Liao, C. T. Lin, Y. Y. I. Shih, T. Q. Duong, H. Y. Lai, P. H. Wang, R. Wu, S. Tsang, J. Y. Chang, M. L. Li, and Y. Y. Chen, “Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy,” J. Cereb. Blood Flow Metab. 32(6), 938–951 (2012).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 1(2), 207–215 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Nat. Methods (3)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4(11), 780–785 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13264–13269 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial Filter Based Bessel-Like Beam for Improved Penetration Depth Imaging in Fluorescence Microscopy,” Sci. Rep. 2, 692 (2012).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (1)

T. J. Holmes, S. Bhattacharyya, J. A. Cooper, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of biological confocal microscopy. James B. Pawley, ed. (Plenum, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the BB-PAM system. AL, achromatic lens; AM, annular mask; AX, axicon; BS, beam sampler; DAQ, data acquisition card; L1, L2, …, L6, optical lenses; M1 and M2, mirrors; P, prism; PD, photodiode; PH, pinhole; S, sample; UT, ultrasonic transducer; W, water tank.
Fig. 2
Fig. 2 Illustration for phantom preparation. (a) Side view. (b) Top view.
Fig. 3
Fig. 3 Illustration of the effectiveness of blind-deconvolution on a Bessel-beam image. (a) Cross-section image of a experimental Bessel beam. (b) Corresponding theoretical distribution fitted for (a). (c) Ground truth checkerboard image. (d) Blurred and noisy image produced from adding Gaussian white noise on the convolution result of (b) and (c). (e) Deblurred image by blind deconvolution using (a) as the initial PSF. (f) Profiles along the dashed lines in (c)-(e). Units, a.u.
Fig. 4
Fig. 4 Lateral resolution estimation of BB- and GB- PAM. (a) PA image of a bar edge on the resolution target by GB-PAM. (b) ESF and LSF extracted from (a). (c) Photograph of the excitation spot of BB-PAM. (d) X axis linecut extracted from (c). NPA, normalized photoacoustic amplitude; NOI, normalized optical intensity.
Fig. 5
Fig. 5 DoF estimation of BB-PAM and GB-PAM. Left column: BB-PAM, right column: GB-PAM. (a) and (b) are MAP images of a vertically tilted carbon fiber. (c) and (d) Linear relation between vertical distance Δz and planar distance Δy. (e) and (f) Transverse width versus different relative depth of the fiber PA signals.
Fig. 6
Fig. 6 Carbon-fiber network imaged by BB- and GB- PAM. PA images of the fiber net by (a) BB-PAM and (b) GB-PAM, respectively. (c) and (d), close-up cross sectional B images through the dashed lines in (a) and (b), respectively. (e) Profiles of the top two fibers. Colorbar, normalized photoacoustic amplitude; Scale, 50 μm.
Fig. 7
Fig. 7 Open-skull mouse cerebral vasculature imaged by (a) GB- and (b) BB- PAM. The white arrows in (b) denotes several vessels which cannot be recognized in (a). (c) Deconvolved view of (b). (d), (e), (f) are the close-up images of the areas indicated by dash rectangles in (a), (b) and (c), respectively. (g) The normalized amplitude distribution and their Gaussian fit along the dash line in (e) and (f).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

o ^ k + 1 = o ^ k ( h I h o ^ k )

Metrics