Abstract

We present a theoretical study of guided resonances (GR) on a thin film lithium niobate rectangular lattice photonic crystal by band diagram calculations and 3D Finite Difference Time Domain (FDTD) transmission investigations which cover a broad range of parameters. A photonic crystal with an active zone as small as 13μm×13μm×0.7μm can be easily designed to obtain a resonance Q value in the order of 1000. These resonances are then employed in electric field (E-field) sensing applications exploiting the electro optic (EO) effect of lithium niobate. A local field factor that is calculated locally for each FDTD cell is proposed to accurately estimate the sensitivity of GR based E-field sensor. The local field factor allows well agreement between simulations and reported experimental data therefore providing a valuable method in optimizing the GR structure to obtain high sensitivities. When these resonances are associated with sub-picometer optical spectrum analyzer and high field enhancement antenna design, an E-field probe with a sensitivity of 50 μV/m could be achieved. The results of our simulations could be also exploited in other EO based applications such as EEG (Electroencephalography) or ECG (Electrocardiography) probe and E-field frequency detector with an ’invisible’ probe to the field being detected etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate

Wentao Qiu, Abdoulaye Ndao, Venancio Calero Vila, Roland Salut, Nadège Courjal, Fadi Issam Baida, and Maria-Pilar Bernal
Opt. Lett. 41(6) 1106-1109 (2016)

Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: a comparative study

Marco Pisco, Armando Ricciardi, Ilaria Gallina, Giuseppe Castaldi, Stefania Campopiano, Antonello Cutolo, Andrea Cusano, and Vincenzo Galdi
Opt. Express 18(16) 17280-17293 (2010)

Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs

Jun Deng, Sajid Hussain, Vanga Sudheer Kumar, Wei Jia, Ching Eng Png, Lim Soon Thor, Andrew A. Bettiol, and Aaron J. Danner
Opt. Express 21(3) 3243-3252 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B,  65, 235112 (2002).
    [Crossref]
  2. U. Fano, “Effects of configuration interaction on intensities and Phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  3. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
    [Crossref]
  4. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
    [Crossref]
  5. P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090 (2000).
    [Crossref]
  6. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
    [Crossref]
  7. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett 84, 4905 (2004).
    [Crossref]
  8. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
    [Crossref]
  9. B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
    [Crossref]
  10. H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
    [Crossref]
  11. A. E. Miroshnichenko and Y. S. Kivshar, “Mach Zehnder Fano interferometer,” Appl. Phys. Lett 95, 121109 (2009).
    [Crossref]
  12. A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
    [Crossref]
  13. T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.
  14. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008).
    [Crossref] [PubMed]
  15. Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
    [Crossref]
  16. J. Deng, S. Hussain, V. S. Kumar, W. Jia, C. E. Png, L. Soon Thor, A. A. Bettiol, and A. J. Danner, “Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs,” Opt. Express 21(3), 3243–3252 (2013).
    [Crossref] [PubMed]
  17. K. K. Wong, Properties Of Lithium Niobate (The Institution of Engineering and Technology, 2002).
  18. nanoln.com .
  19. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [Crossref]
  20. C. Nicolaou, W. T. Lau, R. Gad, H. Akhavan, R. Schilling, and O. Levi, “Enhanced detection limit by dark mode perturbation in 2d photonic crystal slab refractive index sensors,” Opt. Express 21(25), 31698–31712 (2013).
    [Crossref]
  21. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
    [Crossref] [PubMed]
  22. A. Yariv and P. Yeh, Optical Waves In Crystals: Propagation And Control Of Laser Radiation (Wiley-Blackwell, 2002).
  23. Y. R. Shen, The Principles Of Nonlinear Optics (Wiley-Blackwell, 2002).
  24. H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, La nanophotonique (Lavoisier, 2005).
  25. L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
    [Crossref]
  26. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
    [Crossref]
  27. H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20(19), 20884–20893 (2012).
    [Crossref] [PubMed]
  28. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  29. H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
    [Crossref] [PubMed]
  30. W. Qiu, A. Ndao, V. Calero, R. Salut, N. Courjal, F. I. Baida, and M.-P. Bernal, “Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate,” Opt. Lett. 41(6), 1106–1109 (2016).
    [Crossref] [PubMed]
  31. V. M. N. Passaro and F. D. Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE Journal of Selected Topics in Quantum Electronics,  12(1), 124–133 (2006).
    [Crossref]
  32. X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband Bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
    [Crossref]

2016 (1)

2014 (2)

X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Integrated photonic electromagnetic field sensor based on broadband Bowtie antenna coupled silicon organic hybrid modulator,” J. Lightwave Technol. 32(20), 3774–3784 (2014).
[Crossref]

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

2013 (3)

2012 (4)

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20(19), 20884–20893 (2012).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

2009 (2)

A. E. Miroshnichenko and Y. S. Kivshar, “Mach Zehnder Fano interferometer,” Appl. Phys. Lett 95, 121109 (2009).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

2008 (2)

2006 (2)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

V. M. N. Passaro and F. D. Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE Journal of Selected Topics in Quantum Electronics,  12(1), 124–133 (2006).
[Crossref]

2005 (2)

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
[Crossref]

2004 (1)

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett 84, 4905 (2004).
[Crossref]

2003 (2)

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
[Crossref]

2002 (2)

2000 (1)

P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090 (2000).
[Crossref]

1997 (1)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and Phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Akhavan, H.

André, R.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Astic, M.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Baida, F. I.

Belarouci, A.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Benyattou, T.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Berggren, J.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

Bernal, M.-P.

Bettiol, A. A.

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Calero, V.

Chen, L.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Chen, R. T.

Chevalier, C.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Chuwongin, S.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Collet, M.

Courjal, N.

Danner, A. J.

Delalande, C.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, La nanophotonique (Lavoisier, 2005).

Delaye, P.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Deng, J.

Digonnet, M.

Drouard, E.

Fan, S.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett 84, 4905 (2004).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
[Crossref]

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B,  65, 235112 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and Phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Ferrier, L.

Flach, S.

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
[Crossref]

Frey, R.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Fu, Y.

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

Gad, R.

Gellineau, A.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

Gerelli, E.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Gong, Q.

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

Guyot, C.

Hammar, M.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

Harouri, A.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Hosseini, A.

Howe, R. T.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

Hu, X.

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

Hussain, S.

Ibanescu, M.

Ippen, E.

Jamois, C.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Jen, A. K.-Y.

Jia, W.

Joannopoulos, J. D.

Johnson, S. G.

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Jung, I. W.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Kilic, O.

Kino, G.

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Mach Zehnder Fano interferometer,” Appl. Phys. Lett 95, 121109 (2009).
[Crossref]

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
[Crossref]

Kumar, V. S.

Landry, J.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

Lau, W. T.

Leonardis, F. D.

V. M. N. Passaro and F. D. Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE Journal of Selected Topics in Quantum Electronics,  12(1), 124–133 (2006).
[Crossref]

Letartre, X.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Letatre, X.

Levenson, A.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, La nanophotonique (Lavoisier, 2005).

Levi, O.

Lourtioz, J.-M.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, La nanophotonique (Lavoisier, 2005).

Lu, H.

Luo, J.

Ma, Z.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Merolla, J. M.

Milord, L.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Mingaleev, S. F.

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Mach Zehnder Fano interferometer,” Appl. Phys. Lett 95, 121109 (2009).
[Crossref]

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
[Crossref]

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Ndao, A.

Nicolaou, C.

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Paddon, P.

P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090 (2000).
[Crossref]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Pang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Park, B.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

Passaro, V. M. N.

V. M. N. Passaro and F. D. Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE Journal of Selected Topics in Quantum Electronics,  12(1), 124–133 (2006).
[Crossref]

Png, C. E.

Provine, J.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

Qiang, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Qin, G.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Qiu, W.

Razzari, L.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Rigneault, H.

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, La nanophotonique (Lavoisier, 2005).

Rojo-Romeo, P.

Roosen, G.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Sadani, B.

Salut, R.

W. Qiu, A. Ndao, V. Calero, R. Salut, N. Courjal, F. I. Baida, and M.-P. Bernal, “Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate,” Opt. Lett. 41(6), 1106–1109 (2016).
[Crossref] [PubMed]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Schilling, R.

Seassal, C.

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Seo, J.-H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles Of Nonlinear Optics (Wiley-Blackwell, 2002).

Shuai, Y.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

Smith, N.

Solgaard, O.

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
[Crossref] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
[Crossref]

Soljacic, M.

Soon Thor, L.

Stenger, V.

Subbaraman, H.

Suh, W.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett 84, 4905 (2004).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569 (2003).
[Crossref]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Träger, D.

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

Ulliac, G.

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

Viktorovitch, P.

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008).
[Crossref] [PubMed]

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

Wang, S.

Wong, K. K.

K. K. Wong, Properties Of Lithium Niobate (The Institution of Engineering and Technology, 2002).

Yang, H.

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Yang, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves In Crystals: Propagation And Control Of Laser Radiation (Wiley-Blackwell, 2002).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves In Crystals: Propagation And Control Of Laser Radiation (Wiley-Blackwell, 2002).

Young, J. F.

P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090 (2000).
[Crossref]

Young, Jeff F.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

Zhan, Q.

Zhang, X.

Zhang, Y.

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

Zhao, D.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Zhou, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Appl. Phys. Lett (5)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett 70, 1438 (1997).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett 84, 4905 (2004).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett 82, 1999 (2003).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Mach Zehnder Fano interferometer,” Appl. Phys. Lett 95, 121109 (2009).
[Crossref]

Y. Zhang, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultrafast all-optical tunable Fano resonance in nonlinear ferroelectric photonic crystals,” Appl. Phys. Lett 100, 031106 (2012).
[Crossref]

Appl. Phys. Lett. (2)

L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, “Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals,” Appl. Phys. Lett. 86, 231106 (2005).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

V. M. N. Passaro and F. D. Leonardis, “Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator,” IEEE Journal of Selected Topics in Quantum Electronics,  12(1), 124–133 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Park, I. W. Jung, J. Provine, A. Gellineau, J. Landry, R. T. Howe, and O. Solgaard, “Double-layer silicon photonic crystal fiber-tip temperature sensors,” IEEE Photonics Technol. Lett. 26, 900–903 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D: Appl. Phys. 42, 234007 (2009).
[Crossref]

Nat. Photonics (1)

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6, 617–622 (2012).
[Crossref]

Opt. Express (7)

J. Deng, S. Hussain, V. S. Kumar, W. Jia, C. E. Png, L. Soon Thor, A. A. Bettiol, and A. J. Danner, “Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs,” Opt. Express 21(3), 3243–3252 (2013).
[Crossref] [PubMed]

C. Nicolaou, W. T. Lau, R. Gad, H. Akhavan, R. Schilling, and O. Levi, “Enhanced detection limit by dark mode perturbation in 2d photonic crystal slab refractive index sensors,” Opt. Express 21(25), 31698–31712 (2013).
[Crossref]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express 16(17), 13090–13103 (2008).
[Crossref] [PubMed]

H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J. M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20(19), 20884–20893 (2012).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
[Crossref] [PubMed]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2d photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and Phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Phys. Rev. B (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B,  65, 235112 (2002).
[Crossref]

P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090 (2000).
[Crossref]

Phys. Rev. E (1)

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E 71, 036626 (2005).
[Crossref]

Other (6)

T. Benyattou, E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, “Slow Bloch mode cavity for optical trapping,” in Proceedings of IEEE Conference on Transparent Optical Networks, (IEEE2013) pp. 1–5.

K. K. Wong, Properties Of Lithium Niobate (The Institution of Engineering and Technology, 2002).

nanoln.com .

A. Yariv and P. Yeh, Optical Waves In Crystals: Propagation And Control Of Laser Radiation (Wiley-Blackwell, 2002).

Y. R. Shen, The Principles Of Nonlinear Optics (Wiley-Blackwell, 2002).

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, La nanophotonique (Lavoisier, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sketch of the studied 2D infinite square lattice of air holes in LN where the orange square displays the unit cell with lattice constant a. (b) Reciprocal space associated to the square lattice (Γ, M, X) and rectangular lattice (Γ, M1, X1). (c) Band diagram for square lattice structure in (a) with electric field lies in the xy plane and a filling factor f of 0.368. The studied SBM in Γ point is black dashed circled out at normalized frequency of 0.545. The band edge black circled mode at symmetry point X lies at normalized frequency of 0.261. (d) Sketch of rectangular lattice air holes in LN formed by shifting holes center positions of s value in every two columns. The orange rectangle displays the unit cell with period of 2a in x direction. The dashed circles nearby solid line circles are square lattice hole positions. (e) Band diagram for rectangular structure in (d) with parameters values a = 630 nm, s = 30 nm, electric field in xy plane, filling factor f of 0.368. The two SBMs in Γ point are black circled out and lie at normalized frequency of 0.265 and 0.363 respectively.
Fig. 2
Fig. 2 (a) Unit cell of square lattice air hole on TFLN of lattice constant a, radius r, TFLN slab thickness t. (b) Unit cell of rectangular lattice structure on TFLN by shifting hole position s, the black arrows at the bottom show the illumination direction. (c) Sketch of conical air hole with θ as the conicity angle. (d) Sketch of finite size air membrane type PhC structure, the coordinate (not relevant to lithium niobate crystalline orientation) shows the direction definition in agreement with that in Fig. 1(a). Period along x direction is 2a, while along y direction is a. (e) N ×N holes of finite size air bridged type PhC structure, with N = 6 shown in the sketch.
Fig. 3
Fig. 3 (a) Normalized transmission spectra for square and rectangular infinite structures. Dashed blue, green curves and solid red curve correspond to square lattice structure. Solid blue and green curves correspond to rectangular structure with parameters calculated from PWE prediction to set the two SBMs operating at 1.55 μm. The modes in solid blue curve under highlighted orange rectangles are the folded two SBMs due to super lattice. (b) Normalized electric field amplitude distribution over one unit cell calculated at 100 nm below the PhC top surface. The upper one corresponds to 1st SBM while the bottom one corresponds to 2nd SBM as indicated in Fig. 3(a). (c) Normalized transmission spectra for a = 630 nm, r = 230 nm, s = 30 nm, t = 700 nm, varying θ. (d) Normalized transmission spectra for a = 630 nm, r = 230 nm, t = 700 nm, varying s.
Fig. 4
Fig. 4 (a) Normalized transmission spectra of a finite PhC size air membrane rectangular lattice structure with N = 30, a = 630 nm, r = 230 nm, t = 700 nm as fixed parameters and s being the parameter that varies. (b) Normalized transmission spectra of air membrane rectangular structure of a = 630 nm, r = 230 nm, t = 700 nm, s = 15 nm and varying N. (c) Normalized transmission spectra of air membrane and air bridged structure of N = 30, t = 700 nm for three different configurations (see inset for geometrical parameters). (d) Normalized electric field amplitude distribution of purple circled resonance in Fig. 4(c) which corresponds to air bridged structure with a = 630 nm, r = 230 nm, s = 15 nm, N = 30 and t = 700 nm.
Fig. 5
Fig. 5 Numerically calculated plot showing the λres as a function of the E-field (the insets show the zoom view of the first few data points) for infinite PhC air bridged structure with parameters of (a) a = 630 nm, r = 230 nm, t = 700 nm and varying s, (b) a = 450 nm, r = 165 nm, t = 700 nm and varying s.

Tables (1)

Tables Icon

Table 1 Resonance dip wavelengths shift with respect to different Ez

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| Δ ( 1 / n 2 ) 1 Δ ( 1 / n 2 ) 2 Δ ( 1 / n 2 ) 3 Δ ( 1 / n 2 ) 4 Δ ( 1 / n 2 ) 5 Δ ( 1 / n 2 ) 6 | = | 0 r 22 r 13 0 r 22 r 13 0 0 r 33 0 r 51 0 r 51 0 0 r 22 0 0 | | E x E y E z |
Δ n = 1 2 n e 3 r 33 E z
f o p t ¯ = P h C | E ( x , y , z ) | d x d y d z b u l k | E ( x , y , z ) | d x d y d z
Δ n ( x , y , z ) = 1 2 n e 3 f o p t 2 ( x , y , z ) r 33 E z

Metrics