Abstract

We experimentally demonstrate the color-tunable emission of CdTe quantum dots (QDs) enabled by strongly coupling the QDs to the nanoporous gold (NPG) structure at room temperature. By manipulating the concentrations of the QDs or the excitation flux of the laser, the coupling strength between the excitons in QDs and the plasmons in NPG is controlled, resulting in a large Rabi splitting at the magnitude of hundreds of meV and a photoluminescence (PL) tuning distinguishable by the naked eye. In addition, such large PL tuning is enabled not only for the strong coupling occurring on resonance but also off resonance. We believe that our study offers a new approach towards designing and fabricating novel opto-electronic devices where dynamical and large spectral tuning of QD PL emission is desired.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing

H. Suchomel, S. Kreutzer, M. Jörg, S. Brodbeck, M. Pieczarka, S. Betzold, C. P. Dietrich, G. Sęk, C. Schneider, and S. Höfling
Opt. Express 25(20) 24816-24826 (2017)

Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity

Dmitriy Dovzhenko, Konstantin Mochalov, Ivan Vaskan, Irina Kryukova, Yury Rakovich, and Igor Nabiev
Opt. Express 27(4) 4077-4089 (2019)

Room temperature polariton light emitting diode with integrated tunnel junction

S. Brodbeck, J.-P. Jahn, A. Rahimi-Iman, J. Fischer, M. Amthor, S. Reitzenstein, M. Kamp, C. Schneider, and S. Höfling
Opt. Express 21(25) 31098-31104 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
    [Crossref] [PubMed]
  2. P. Hawrylak, L. Jacak, and A. Wojs, Quantum Dots (Springer Verlag, 1998).
  3. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
    [Crossref]
  4. D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
    [Crossref]
  5. S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989).
    [Crossref]
  6. R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
    [Crossref] [PubMed]
  7. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  8. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
    [Crossref] [PubMed]
  9. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
    [Crossref]
  10. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photon. 4, 371–375 (2010).
    [Crossref]
  11. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
    [Crossref] [PubMed]
  12. J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
    [Crossref] [PubMed]
  13. J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
    [Crossref]
  14. M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
    [Crossref]
  15. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
    [Crossref] [PubMed]
  16. D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42–47 (2010).
    [Crossref]
  17. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
    [Crossref]
  18. S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
    [Crossref]
  19. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
    [Crossref]
  20. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [Crossref] [PubMed]
  21. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
    [Crossref]
  22. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
    [Crossref] [PubMed]
  23. Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
    [Crossref] [PubMed]
  24. J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [Crossref] [PubMed]
  25. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [Crossref] [PubMed]
  26. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
    [Crossref]
  27. D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
    [Crossref]
  28. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
    [Crossref] [PubMed]
  29. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98, 081103 (2011).
    [Crossref]
  30. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
    [Crossref]
  31. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
    [Crossref]
  32. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
    [Crossref] [PubMed]
  33. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
    [Crossref] [PubMed]
  34. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
    [Crossref] [PubMed]
  35. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
    [Crossref] [PubMed]
  36. T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
    [Crossref]
  37. D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
    [Crossref]
  38. T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
    [Crossref]
  39. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
    [Crossref]
  40. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
    [Crossref]
  41. F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
    [Crossref] [PubMed]
  42. A. Wittstock, J. Biener, J. Erlebacher, and M. Bäumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material (RSC Publishing, 2012), Chap. 8.
    [Crossref]
  43. T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
    [Crossref] [PubMed]
  44. M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
    [Crossref]
  45. Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
    [Crossref]
  46. V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67, 085311 (2003).
    [Crossref]
  47. M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
    [Crossref]

2015 (1)

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

2014 (1)

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

2013 (2)

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

2012 (2)

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

2011 (7)

T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98, 081103 (2011).
[Crossref]

2010 (7)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[Crossref]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42–47 (2010).
[Crossref]

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photon. 4, 371–375 (2010).
[Crossref]

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

2009 (2)

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

2008 (2)

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

2007 (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

2006 (3)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

2005 (3)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

2004 (3)

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

2003 (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67, 085311 (2003).
[Crossref]

2002 (1)

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

2001 (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

1999 (1)

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

1992 (1)

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

1990 (1)

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

1989 (1)

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989).
[Crossref]

1988 (1)

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Adawi, A. M.

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

Aggarwal, R. J.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Agranovich, V. M.

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67, 085311 (2003).
[Crossref]

Ahl, S.

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

Andre, R.

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Anstis, G.R.

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

Arakawa, Y.

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

Armitage, A.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Bajoni, D.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Barbay, S.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

Bäumer, M.

A. Wittstock, J. Biener, J. Erlebacher, and M. Bäumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material (RSC Publishing, 2012), Chap. 8.
[Crossref]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Bera, D.

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

Biener, J.

A. Wittstock, J. Biener, J. Erlebacher, and M. Bäumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material (RSC Publishing, 2012), Chap. 8.
[Crossref]

Bloch, J.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Borghese, F.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Bosman, M.

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

Bouchoule, S.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Bouwmeester, D.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Bradley, A. L.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

Brida, D.

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Byrne, S. J.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Caminade, A.

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

Canaguier-Durand, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

Carmichael, H. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

Cerullo, G.

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Chen, L.

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Chen, M.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Chen, W.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Clark, C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Clarke, J. D.

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

Coles, D.

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Coles, D. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

Cortie, M. B.

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

Dang, L. S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[Crossref]

del Valle, E.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

Denti, P.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Devaux, E.

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Di Stefano, O.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Ebbesen, T. W.

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Ebbesen, T.W.

T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Erlebacher, J.

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

A. Wittstock, J. Biener, J. Erlebacher, and M. Bäumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material (RSC Publishing, 2012), Chap. 8.
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Faraon, A.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photon. 4, 371–375 (2010).
[Crossref]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Gaponik, N.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Gauthier, D. J.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

Gehring, G. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

Genet, C.

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Gerard, V. A.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Giebink, N. C.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98, 081103 (2011).
[Crossref]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[Crossref]

Guan, P.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Gudat, J.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Gun’ko, Y. K.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Haacke, S.

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Hao, Y.

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989).
[Crossref]

Hawrylak, P.

P. Hawrylak, L. Jacak, and A. Wojs, Quantum Dots (Springer Verlag, 1998).

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Hobson, P. A.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Holloway, P. H.

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Hutchison, J. A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Irvine, W. T. M.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Iwamoto, S.

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

Jacak, L.

P. Hawrylak, L. Jacak, and A. Wojs, Quantum Dots (Springer Verlag, 1998).

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

Keast, V. J.

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kéna-Cohen, S.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photon. 4, 371–375 (2010).
[Crossref]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Kim, H.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Kim, J.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

Kimble, H. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Kleppner, D.

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989).
[Crossref]

Knoll, W.

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Kumagai, N.

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Kuszelewicz, R.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Lang, X.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

Laussy, F. P.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

Lemaître, A.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Leonard, J.

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

Lesnyak, V.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Lidzey, D. G.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67, 085311 (2003).
[Crossref]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

Liscio, A.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

Litinskaia, M.

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67, 085311 (2003).
[Crossref]

Littlewood, P.

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42–47 (2010).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Liu, F.

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Lunz, M.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Majoral, J.

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Matyi, R. J.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Michetti, P.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Moore, T. M.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Morin, S. E.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

Mossberg, T. W.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[Crossref]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

Ohta, R.

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

Ota, Y.

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

Palermo, V.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Petroff, P. M.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Polli, D.

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qian, L.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Rajendran, S. K.

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

Rakher, M. T.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Randall, J. N.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Reed, M. A.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Rempe, G.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Richard, M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

Ridolfo, A.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Romestain, R.

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

Rupper, R.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

S?k, G.

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

Saija, R.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Samorì, P.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

Savasta, S.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Schwartz, T.

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Semenova, E.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Senellart, P.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Shi, W.

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Skolnick, M. S.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

Snoke, D.

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42–47 (2010).
[Crossref]

Song, C.

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Szymanska, M. H.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

Tejedor, C.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

Thompson, R. J.

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

Thon, S. M.

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Toppari, J. J.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Törmä, P.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

Tseng, T.

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

Tsoi, W. C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[Crossref]

Virgili, T.

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

Vuckovic, J.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Walker, S.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

Wasielewski, M. R.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98, 081103 (2011).
[Crossref]

Wertz, E.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

Wetsel, A. E.

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Whittaker, D. M.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

Wiederrecht, G. P.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98, 081103 (2011).
[Crossref]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Wittstock, A.

A. Wittstock, J. Biener, J. Erlebacher, and M. Bäumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material (RSC Publishing, 2012), Chap. 8.
[Crossref]

Wojs, A.

P. Hawrylak, L. Jacak, and A. Wojs, Quantum Dots (Springer Verlag, 1998).

Wu, Q.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Yu, F.

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Zhao, X.

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Zhu, Y.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

Zi, J.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

ACS Nano (2)

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

M. Bosman, G.R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, “Light splitting in nanoporous gold and silver,” ACS Nano 6, 319–326 (2012).
[Crossref]

Adv. Funct. Mater. (1)

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater. 21, 3691–3696 (2011).
[Crossref]

Adv. Mater. (1)

J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, “Tuning the work-function via strong coupling,” Adv. Mater. 25, 2481–2485 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78, 7346–7350 (2006).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
[Crossref]

Appl. Phys. Lett. (5)

S. M. Thon, M. T. Rakher, H. Kim, J. Gudat, W. T. M. Irvine, P. M. Petroff, and D. Bouwmeester, “Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity,” Appl. Phys. Lett. 94, 111115 (2009).
[Crossref]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98, 093701 (2011).
[Crossref]

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002).
[Crossref]

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98, 081103 (2011).
[Crossref]

Y. Hao, X. Zhao, C. Song, L. Chen, W. Shi, and F. Liu, “Enhanced broadband wide-angle light-graphene interactions in visible wavelengths assisted by nanoporous gold structure,” Appl. Phys. Lett. 104, 201103 (2014).
[Crossref]

Chem. Mater. (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

ChemPhysChem (1)

T. Schwartz, J. A. Hutchison, J. Leonard, C. Genet, S. Haacke, and T. W. Ebbesen, “Polariton dynamics under strong light-molecule coupling,” ChemPhysChem 14, 125–131 (2013).
[Crossref]

Materials (1)

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260–2345 (2010).
[Crossref]

Nano Lett. (1)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10, 274–278 (2010).
[Crossref]

Nature (5)

J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, R. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Nature Photon. (1)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photon. 4, 371–375 (2010).
[Crossref]

Nature Phys. (2)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nature Phys. 6, 279–283 (2010).
[Crossref]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (6)

M. Richard, J. Kasprzak, R. Andre, R. Romestain, and L. S. Dang, “Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,” Phys. Rev. B 72, 201301 (2005).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, “Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity,” Phys. Rev. B 84, 205214 (2011).
[Crossref]

T. Virgili, D. Coles, A. M. Adawi, C. Clark, P. Michetti, S. K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D. G. Lidzey, “Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity,” Phys. Rev. B 83, 245309 (2011).
[Crossref]

V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B 67, 085311 (2003).
[Crossref]

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81, 205316 (2010).
[Crossref]

Phys. Rev. Lett. (12)

T. Schwartz, J. A. Hutchison, C. Genet, and T.W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and Rhodamine 6G molecules,” Phys. Rev. Lett. 103, 053602 (2009).
[Crossref] [PubMed]

D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett. 82, 3316–3319 (1999).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Vacuum Rabi spectra of a single quantum emitter,” Phys. Rev. Lett. 114, 143603 (2015).
[Crossref] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[Crossref] [PubMed]

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101, 266402 (2008).
[Crossref] [PubMed]

R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity,” Phys. Rev. Lett. 68, 1132–1135 (1992).
[Crossref] [PubMed]

M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535–537 (1988).
[Crossref] [PubMed]

Phys. Today (2)

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989).
[Crossref]

D. Snoke and P. Littlewood, “Polariton condensates,” Phys. Today 63, 42–47 (2010).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Other (2)

P. Hawrylak, L. Jacak, and A. Wojs, Quantum Dots (Springer Verlag, 1998).

A. Wittstock, J. Biener, J. Erlebacher, and M. Bäumer, Nanoporous Gold: From an Ancient Technology to a High-Tech Material (RSC Publishing, 2012), Chap. 8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The absorption and the PL emission of CdTe QDs show a strong Stokes shift of 30 nm. The linewidths of the used QDs is about 50 nm (200 meV). (b) The reflection spectra of the untreated white gold leaf, the NPG, and the bare glass slide indicate that SPs are excited in the NPG structures over a very broad range. (c) The structural characteristics of the QDs can be clearly observed via transmission electron microscopy, and (d) that of NPG is shown by scanning electron microscopy.
Fig. 2
Fig. 2 (a) Tunable plasmonic peaks are observed in the reflection spectra of the NPG film under different acid erosion time. (b) The reflection spectra of the NPG film mixed with the 750 pM CdTe QDs indicate that the strong coupling occurs between the plasmons and the excitons.
Fig. 3
Fig. 3 The dependence of the strong coupling and the PL emission on the QD concentrations. (a) The evolution of the reflection spectra in the loaded structures clearly shows that the coupling strength is enhanced, resulting in a maximum Rabi splitting of ∼ 370 meV, as the QD concentration increasing from 75 to 750 pM. (b) The polariton emission shifts from 540 nm to 571 nm as the QD concentrations on loaded structures increase. (c) The PL emission remains unshifted as the CdTe QDs with different concentrations spin-coated on the glass substrate. (d) A discernible coloration change from green to greenish yellow from the PL image, as a result of increasing QD concentrations on the loaded structures.
Fig. 4
Fig. 4 The dependence of the strong coupling and the PL emission on the flux of the laser excitation. (a) The evolution of the reflection spectra as the excitation power changing from 0, 7.5, 15, 30, 60, to 120 mW. From the splitting, it is evidenced that the laser excitation output plays a crucial role on the strong coupling. (b) The PL images recorded in the “dark” indicate the coloration variation from green to greenish yellow as the illumination flux of the laser increasing from 7.5 to 120 mW.
Fig. 5
Fig. 5 The strong coupling occurring on detuning conditions in the loaded structures. (a) The reflection spectra of the loaded structures with the QD emission peaks at 500, 520, 540, 560, and 580 nm. (b) Similar splitting width is observed by comparing the strong coupling on resonance and off resonance in the NPG platform. Such compatibility is particularly useful in the design and fabrication of practical applications. For examples, when the 500-nm QDs couple to the NPG leaf, (c) cyan coloration under low laser flux changes to (d) green coloration under high-power illumination.

Metrics