Abstract

In this work, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificial crack. The multiplexing capability of this system was also preliminarily demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor

Juejun Hu, Vladimir Tarasov, Anu Agarwal, Lionel Kimerling, Nathan Carlie, Laeticia Petit, and Kathleen Richardson
Opt. Express 15(5) 2307-2314 (2007)

Femtosecond laser photo-response of Ge23Sb7S70 films

Troy Anderson, Laeticia Petit, Nathan Carlie, Jiyeon Choi, Juejun Hu, Anu Agarwal, Lionel Kimerling, Kathleen Richardson, and Martin Richardson
Opt. Express 16(24) 20081-20098 (2008)

Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

C. Dorrer, A. Consentino, R. Cuffney, I. A. Begishev, E. M. Hill, and J. Bromage
Opt. Express 25(22) 26802-26814 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
    [Crossref]
  2. P. A. Fomitchov, A. K. Kromine, and S. Krishnaswamy, “Photoacoustic probes for nondestructive testing and biomedical applications,” Appl. Opt. 41(22), 4451–4459 (2002).
    [Crossref] [PubMed]
  3. E. Biagi, S. Cerbai, P. Gambacciani, and L. Masotti, “Fiber optic broadband ultrasonic probe,” in Sensors, 2008 IEEE(2008), pp. 363–366.
  4. J. Tian, Q. Zhang, and M. Han, “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings,” Opt. Express 21(5), 6109–6114 (2013).
    [Crossref] [PubMed]
  5. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [Crossref] [PubMed]
  6. V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampelle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring(International Society for Optics and Photonics, 2009), pp. 72923D–72928.
  7. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
    [Crossref] [PubMed]
  8. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
    [Crossref] [PubMed]
  9. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  10. Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
    [Crossref]
  11. A. D. McKie, J. W. Wagner, J. B. Spicer, and J. B. Deaton., “Dual-beam interferometer for the accurate determination of surface-wave velocity,” Appl. Opt. 30(28), 4034–4039 (1991).
    [Crossref] [PubMed]
  12. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
    [Crossref]
  13. K. Vedam, “The elastic and photoelastic constants of fused quartz,” Phys. Rev. 78(4), 472–473 (1950).
    [Crossref]
  14. S.-C. Her and C.-Y. Huang, “The effects of adhesive and bonding length on the strain transfer of optical fiber sensors,” Appl. Sci. 6(1), 13 (2016).
    [Crossref]

2016 (1)

S.-C. Her and C.-Y. Huang, “The effects of adhesive and bonding length on the strain transfer of optical fiber sensors,” Appl. Sci. 6(1), 13 (2016).
[Crossref]

2014 (1)

2013 (1)

2011 (1)

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
[Crossref] [PubMed]

2008 (1)

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

2004 (1)

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

2002 (1)

2001 (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[Crossref] [PubMed]

1997 (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

1991 (1)

1950 (1)

K. Vedam, “The elastic and photoelastic constants of fused quartz,” Phys. Rev. 78(4), 472–473 (1950).
[Crossref]

Biagi, E.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[Crossref] [PubMed]

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

Brenci, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

Deaton, J. B.

Fomitchov, P. A.

Fontani, S.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
[Crossref] [PubMed]

Han, M.

Her, S.-C.

S.-C. Her and C.-Y. Huang, “The effects of adhesive and bonding length on the strain transfer of optical fiber sensors,” Appl. Sci. 6(1), 13 (2016).
[Crossref]

Hinckley, S.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Huang, C.-Y.

S.-C. Her and C.-Y. Huang, “The effects of adhesive and bonding length on the strain transfer of optical fiber sensors,” Appl. Sci. 6(1), 13 (2016).
[Crossref]

Krishnaswamy, S.

Kromine, A. K.

Liao, Y.

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

Margheri, F.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[Crossref] [PubMed]

Masotti, L.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

McKie, A. D.

Menichelli, D.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[Crossref] [PubMed]

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
[Crossref] [PubMed]

Pieraccini, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

Spicer, J. B.

Tian, J.

Tian, Y.

Vedam, K.

K. Vedam, “The elastic and photoelastic constants of fused quartz,” Phys. Rev. 78(4), 472–473 (1950).
[Crossref]

Wagner, J. W.

Wang, X.

Wild, G.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Wu, N.

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
[Crossref] [PubMed]

Yao, J.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
[Crossref] [PubMed]

Zhang, Q.

Zhao, Y.

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

Zou, X.

Appl. Opt. (2)

Appl. Sci. (1)

S.-C. Her and C.-Y. Huang, “The effects of adhesive and bonding length on the strain transfer of optical fiber sensors,” Appl. Sci. 6(1), 13 (2016).
[Crossref]

IEEE Sens. J. (1)

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lasers Eng. (1)

Y. Zhao and Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[Crossref]

Opt. Rev. (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: Optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
[Crossref]

Phys. Rev. (1)

K. Vedam, “The elastic and photoelastic constants of fused quartz,” Phys. Rev. 78(4), 472–473 (1950).
[Crossref]

Sensors (Basel) (1)

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 12(4), 3687–3705 (2011).
[Crossref] [PubMed]

Other (3)

E. Biagi, S. Cerbai, P. Gambacciani, and L. Masotti, “Fiber optic broadband ultrasonic probe,” in Sensors, 2008 IEEE(2008), pp. 363–366.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampelle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring(International Society for Optics and Photonics, 2009), pp. 72923D–72928.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The principle of operation for a single AFO-SHM sensing node.
Fig. 2
Fig. 2 (a) System schematic of an AFO-SHM system; (b) Sample spectrum of an AFO-SHM system containing 5 nodes.
Fig. 3
Fig. 3 (a) AFO-SHM node installed on the tested aluminum plate; (b) optical fiber special splicing structure; (c) pre-installation test with EFPI fiber sensor and direct laser illumination.
Fig. 4
Fig. 4 (a) Acoustic signatures obtained with EFPI sensor and direct laser surface illumination, the shift of each curve represents the source-receiver distance; (b) Acoustic signatures obtained with FBG sensor and direct laser surface illumination, the shift of each curve represents the source-receiver distance; (c) The final acoustic signature of the AFO-SHM unit and its related acoustic signatures from the two pre-installation tests.
Fig. 5
Fig. 5 (a) FBG spectrum monitoring during the strain change process; (b) FBG peak location shifts caused by the strain changes.
Fig. 6
Fig. 6 (a) Acoustic signatures in the thickness monitoring test; (b) peak #T1 center shift; (c) peak #B center shift; (d) peak #T2 center shift.
Fig. 7
Fig. 7 (a) Acoustic signatures in the temperature monitoring test; (b) peak #T1 center shift; (c) peak #B center shift; (d) peak #T2 center shift.
Fig. 8
Fig. 8 (a) FBG spectrum monitoring during the temperature change process; (b) FBG peak location shifts caused by the temperature changes.
Fig. 9
Fig. 9 (a) AFO-SHM sample with a machined slot on it; (b) Comparison of the original acoustic signature and acoustic signature with a machined slot on the sample.
Fig. 10
Fig. 10 (a) AFO-SHM network sample made of two AFO-SHM nodes; (b) The system spectrum consisting of two FBG reflection peaks; (c) Acoustic signature of node #1 which has a crack on the DUT; (d) Acoustic signature of node #2.

Tables (3)

Tables Icon

Table 1 Propagation speed of the elastic waves in 7075 aluminum

Tables Icon

Table 2 Curve fitting results of the three peaks and the expected values

Tables Icon

Table 3 Peak location associated response rates to temperature change

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t= (2D) 2 + (L+Δ) 2 V
Δ λ B ε = λ B ( 1 n 2 2 [ p 12 ν( p 12 + p 11 )] )
Δ ( L 2 + (2N×t) 2 ) 2N× ( L 2 + (2N×t) 2 ) 1/2 ×Δt

Metrics