Abstract

An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is −74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
    [Crossref]
  2. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [Crossref]
  3. Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
    [Crossref]
  4. M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP2005 (2005), pp. 121–124.
  5. H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
    [Crossref] [PubMed]
  6. S.-H. Lee, H.-J. Kim, and J.-I. Song, “Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems,” Opt. Express 22(1), 183–192 (2014).
    [Crossref] [PubMed]
  7. H.-J. Kim, S.-H. Lee, and J.-I. Song, “Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency upconversion in an SOA-MZI,” Microw. Opt. Technol. Lett. 57(1), 35–38 (2015).
    [Crossref]
  8. H.-J. Song, J.-S. Lee, and J.-I. Song, “Signal Up-conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photonics Technol. Lett. 16(2), 593–595 (2004).
    [Crossref]
  9. H.-J. Song, J.-S. Lee, and J.-I. Song, “Error-Free Simultaneous All-optical Upconversion of WDM Radio-over-Fiber Signals,” IEEE Photonics Technol. Lett. 17(8), 1731–1733 (2005).
    [Crossref]
  10. Z. Jia, J. Yu, and G. K. Chang, “All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” IEEE Photonics Technol. Lett. 17(12), 2724–2726 (2005).
    [Crossref]
  11. R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2010), Chap 3.
  12. J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
    [Crossref]
  13. J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,” IEEE Photonics Technol. Lett. 18(12), 1389–1391 (2006).
    [Crossref]
  14. H.-J. Kim and J.-I. Song, “Analog performance of an all-optical frequency upconverter utilizing an electro-absorption modulator for radio-over-fiber applications,” in Proc. ICMMT2010 (2010), pp. 1575-1577.
    [Crossref]
  15. J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
    [Crossref]

2015 (1)

H.-J. Kim, S.-H. Lee, and J.-I. Song, “Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency upconversion in an SOA-MZI,” Microw. Opt. Technol. Lett. 57(1), 35–38 (2015).
[Crossref]

2014 (1)

2011 (1)

Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
[Crossref]

2010 (1)

2009 (1)

2006 (1)

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,” IEEE Photonics Technol. Lett. 18(12), 1389–1391 (2006).
[Crossref]

2005 (2)

H.-J. Song, J.-S. Lee, and J.-I. Song, “Error-Free Simultaneous All-optical Upconversion of WDM Radio-over-Fiber Signals,” IEEE Photonics Technol. Lett. 17(8), 1731–1733 (2005).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” IEEE Photonics Technol. Lett. 17(12), 2724–2726 (2005).
[Crossref]

2004 (1)

H.-J. Song, J.-S. Lee, and J.-I. Song, “Signal Up-conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photonics Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

1997 (3)

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[Crossref]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Bakaul, M.

Chang, G. K.

Z. Jia, J. Yu, and G. K. Chang, “All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” IEEE Photonics Technol. Lett. 17(12), 2724–2726 (2005).
[Crossref]

Chi, H.

Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
[Crossref]

Choi, W.-Y.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,” IEEE Photonics Technol. Lett. 18(12), 1389–1391 (2006).
[Crossref]

Fan, J. C.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[Crossref]

Fujise, M.

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP2005 (2005), pp. 121–124.

Fuster, J. M.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Gamage, P.

Jia, Z.

Z. Jia, J. Yu, and G. K. Chang, “All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” IEEE Photonics Technol. Lett. 17(12), 2724–2726 (2005).
[Crossref]

Kazovsky, L. G.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[Crossref]

Kim, H.-J.

H.-J. Kim, S.-H. Lee, and J.-I. Song, “Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency upconversion in an SOA-MZI,” Microw. Opt. Technol. Lett. 57(1), 35–38 (2015).
[Crossref]

S.-H. Lee, H.-J. Kim, and J.-I. Song, “Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems,” Opt. Express 22(1), 183–192 (2014).
[Crossref] [PubMed]

H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
[Crossref] [PubMed]

H.-J. Kim and J.-I. Song, “Analog performance of an all-optical frequency upconverter utilizing an electro-absorption modulator for radio-over-fiber applications,” in Proc. ICMMT2010 (2010), pp. 1575-1577.
[Crossref]

Laming, R. I.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Lee, J.-S.

H.-J. Song, J.-S. Lee, and J.-I. Song, “Error-Free Simultaneous All-optical Upconversion of WDM Radio-over-Fiber Signals,” IEEE Photonics Technol. Lett. 17(8), 1731–1733 (2005).
[Crossref]

H.-J. Song, J.-S. Lee, and J.-I. Song, “Signal Up-conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photonics Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

Lee, K. L.

Lee, S.-H.

H.-J. Kim, S.-H. Lee, and J.-I. Song, “Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency upconversion in an SOA-MZI,” Microw. Opt. Technol. Lett. 57(1), 35–38 (2015).
[Crossref]

S.-H. Lee, H.-J. Kim, and J.-I. Song, “Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems,” Opt. Express 22(1), 183–192 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
[Crossref]

Lim, C.

Lu, C. L.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[Crossref]

Marti, J.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

Nirmalathas, A.

Novak, D.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Seo, J.-H.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,” IEEE Photonics Technol. Lett. 18(12), 1389–1391 (2006).
[Crossref]

Seo, Y.-K.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,” IEEE Photonics Technol. Lett. 18(12), 1389–1391 (2006).
[Crossref]

Shao, Z.-H.

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP2005 (2005), pp. 121–124.

Sharma, A. B.

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP2005 (2005), pp. 121–124.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Song, H.-J.

H.-J. Song, J.-S. Lee, and J.-I. Song, “Error-Free Simultaneous All-optical Upconversion of WDM Radio-over-Fiber Signals,” IEEE Photonics Technol. Lett. 17(8), 1731–1733 (2005).
[Crossref]

H.-J. Song, J.-S. Lee, and J.-I. Song, “Signal Up-conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photonics Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

Song, J.-I.

H.-J. Kim, S.-H. Lee, and J.-I. Song, “Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency upconversion in an SOA-MZI,” Microw. Opt. Technol. Lett. 57(1), 35–38 (2015).
[Crossref]

S.-H. Lee, H.-J. Kim, and J.-I. Song, “Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems,” Opt. Express 22(1), 183–192 (2014).
[Crossref] [PubMed]

H.-J. Kim and J.-I. Song, “All-optical single-sideband upconversion with an optical interleaver and a semiconductor optical amplifier for radio-over-fiber applications,” Opt. Express 17(12), 9810–9817 (2009).
[Crossref] [PubMed]

H.-J. Song, J.-S. Lee, and J.-I. Song, “Error-Free Simultaneous All-optical Upconversion of WDM Radio-over-Fiber Signals,” IEEE Photonics Technol. Lett. 17(8), 1731–1733 (2005).
[Crossref]

H.-J. Song, J.-S. Lee, and J.-I. Song, “Signal Up-conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photonics Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

H.-J. Kim and J.-I. Song, “Analog performance of an all-optical frequency upconverter utilizing an electro-absorption modulator for radio-over-fiber applications,” in Proc. ICMMT2010 (2010), pp. 1575-1577.
[Crossref]

Waterhouse, R.

Yang, Y.

Yao, J.

Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
[Crossref]

Yu, J.

Z. Jia, J. Yu, and G. K. Chang, “All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” IEEE Photonics Technol. Lett. 17(12), 2724–2726 (2005).
[Crossref]

Zhang, X.

Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
[Crossref]

Zhou, M.-T.

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP2005 (2005), pp. 121–124.

Electron. Lett. (1)

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “1.244-Gb/s Data Distribution in 60-GHz Remote Optical Frequency Up-Conversion Systems,” IEEE Photonics Technol. Lett. 18(12), 1389–1391 (2006).
[Crossref]

Z. Li, H. Chi, X. Zhang, and J. Yao, “Optical single sideband modulation using a fiber-Bragg-grating-based optical Hilbert transformer,” IEEE Photonics Technol. Lett. 23(9), 558–560 (2011).
[Crossref]

H.-J. Song, J.-S. Lee, and J.-I. Song, “Signal Up-conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photonics Technol. Lett. 16(2), 593–595 (2004).
[Crossref]

H.-J. Song, J.-S. Lee, and J.-I. Song, “Error-Free Simultaneous All-optical Upconversion of WDM Radio-over-Fiber Signals,” IEEE Photonics Technol. Lett. 17(8), 1731–1733 (2005).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems,” IEEE Photonics Technol. Lett. 17(12), 2724–2726 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[Crossref]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

H.-J. Kim, S.-H. Lee, and J.-I. Song, “Generation of a 100-GHz optical SSB signal using XPM-based all-optical frequency upconversion in an SOA-MZI,” Microw. Opt. Technol. Lett. 57(1), 35–38 (2015).
[Crossref]

Opt. Express (2)

Other (3)

H.-J. Kim and J.-I. Song, “Analog performance of an all-optical frequency upconverter utilizing an electro-absorption modulator for radio-over-fiber applications,” in Proc. ICMMT2010 (2010), pp. 1575-1577.
[Crossref]

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP2005 (2005), pp. 121–124.

R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2010), Chap 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Operational principle of OSSB frequency upconversion utilizing the XPM effect in an SOA-MZI: (a) Block diagram of the RoF downlink using the proposed OSSB frequency upconverter. (b) Relative phases of the two tones of the optical LO signal in each port of the SOA-MZI. (c) Simulated transfer curve at port 6. (d) Simulated transfer curve at port 7.
Fig. 2
Fig. 2 Optical spectra at each point of the all-optical SSB frequency upconverter shown in Fig. 1 (a). (e) and (f) show the optical RF signals at ports 6 and 7 as observed at the output of the OBPFs, respectively.
Fig. 3
Fig. 3 Experimental setup of the OSSB frequency upconverter utilizing the XPM effect in an SOA-MZI
Fig. 4
Fig. 4 Measured optical power levels of the left and right tones of the optical RF signal at port 6 of the SOA-MZI as a function of the unmodulated optical IF power
Fig. 5
Fig. 5 Measured optical spectra at each node: (a) Optical LO signal at the input of the AWG. (b) Left tone of the optical LO signal at P2 of the SOA-MZI. (c) Right tone of the optical LO signal at P3 of the SOA-MZI. (d) Optical IF signal. (e) OSSB RF signal from port 6 (P6) of the SOA-MZI measured at the output of the OBPF.
Fig. 6
Fig. 6 (a) Electrical RF signal measured at the output of the LNA. (b) Normalized power of the electrical RF signal measured at the BS as a function of the SMF length for transmission of the OSSB signal along with that (simulation) for transmission of the ODSB signal.
Fig. 7
Fig. 7 (a) Normalized conversion efficiency as a function of the LO frequency. (b) Normalized value of the electrical RF signal power (upper sideband signal) as a function of the IF frequency.
Fig. 8
Fig. 8 Measured phase noise of the electrical RF, LO, and IF signals
Fig. 9
Fig. 9 (a) Electrical spectra of the upconverted RF signal for the two-tone test. (b) Electrical power levels of the fundamental and third-order intermodulation distortion components as a function of the electrical IF power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e iβl 2 ( 1 i i 1 ),
E o1 (f)= e i2βl 2 E i1 (f){ e i(Δ ϕ 1 +Δ ϕ IF ) e iΔ ϕ 2 }i e i2βl 2 E i2 (f){ e i(Δ ϕ 1 +Δ ϕ IF ) + e iΔ ϕ 2 }
E o2 (f)=i e i2βl 2 E i1 (f){ e i(Δ ϕ 1 +Δ ϕ IF ) + e iΔ ϕ 2 }+ e i2βl 2 E i2 (f){ e i(Δ ϕ 1 +Δ ϕ IF ) + e iΔ ϕ 2 }.

Metrics