Abstract

We report on the design, fabrication and characterization of silica microtoroid based cavity opto-electromechanical systems (COEMS). Electrodes patterned onto the microtoroid resonators allow for rapid capacitive tuning of the optical whispering gallery mode resonances while maintaining their ultrahigh quality factor, enabling applications such as efficient radio to optical frequency conversion, optical routing and switching applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q inverted silica microtoroid resonators monolithically integrated into a silicon photonics platform

Jens Richter, Maziar P. Nezhad, Birgit Hadam, Thomas Taubner, Joachim Knoch, Florian Merget, Alvaro Moscoso-Mártir, and Jeremy Witzens
Opt. Express 26(21) 27418-27440 (2018)

Free spectral range electrical tuning of a high quality on-chip microcavity

Christiaan Bekker, Christopher G. Baker, Rachpon Kalra, Han-Hao Cheng, Bei-Bei Li, Varun Prakash, and Warwick P. Bowen
Opt. Express 26(26) 33649-33670 (2018)

Fabrication of a microtoroidal resonator with picometer precise resonant wavelength

Xiao-Fei Liu, Fuchuan Lei, Ming Gao, Xu Yang, Guo-Qing Qin, and Gui-Lu Long
Opt. Lett. 41(15) 3603-3606 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
    [Crossref]
  2. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photon. 3, 478–483 (2009).
    [Crossref]
  3. G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
    [Crossref]
  4. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
    [Crossref] [PubMed]
  5. E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
    [Crossref]
  6. K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
    [Crossref] [PubMed]
  7. C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
    [Crossref]
  8. S. Ghosh and G. Piazza, “Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators,” Opt. Express 23, 15477 (2015).
    [Crossref] [PubMed]
  9. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19, 9020–9026 (2011).
    [Crossref] [PubMed]
  10. T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.
  11. M.-C. Lee and M. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
    [Crossref]
  12. C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “Low-power microelectromechanically tunable silicon photonic ring resonator add–drop filter,” Opt. Lett. 40, 3556–3559 (2015).
    [Crossref] [PubMed]
  13. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
    [Crossref]
  14. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  15. S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
    [Crossref] [PubMed]
  16. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  17. E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.
  18. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
    [Crossref]
  19. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
    [Crossref]
  20. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  21. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
    [Crossref]
  22. K. D. Heylman and R. H. Goldsmith, “Photothermal mapping and free-space laser tuning of toroidal optical microcavities,” Appl. Phys. Lett. 103, 211116 (2013).
    [Crossref]
  23. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  24. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [Crossref] [PubMed]
  25. M. Sumetsky, Y. Dulashko, and R. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010).
    [Crossref] [PubMed]
  26. L. Yang, D. Armani, and K. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826 (2003).
    [Crossref]
  27. T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [Crossref] [PubMed]
  28. H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” Opt. Lett. 39, 84 (2014).
    [Crossref]
  29. S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23, 21527–21540 (2015).
    [Crossref] [PubMed]
  30. C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
    [Crossref] [PubMed]
  31. W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2015).
  32. A. Pitanti, J. M. Fink, A. H. Safavi-Naeini, J. T. Hill, C. U. Lei, A. Tredicucci, and O. Painter, “Strong opto-electromechanical coupling in a silicon photonic crystal cavity,” Opt. Express 23, 3196–3208 (2015).
    [Crossref] [PubMed]
  33. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  34. S. Abdulla, L. Kauppinen, M. Dijkstra, M. de Boer, E. Berenschot, H. Jansen, R. de Ridder, and G. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19, 15864 (2011).
    [Crossref] [PubMed]
  35. M. Winger, T. D. Blasius, T. P. MayerAlegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
    [Crossref]
  36. T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
    [Crossref] [PubMed]
  37. D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
    [Crossref]
  38. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592 (2013).
    [Crossref] [PubMed]
  39. X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
    [Crossref] [PubMed]
  40. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
    [Crossref]
  41. P. Slade and E. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 µ m–40 µ m) electrical contacts,” IEEE Trans. Comp. Packag. Technol. 25, 390–396 (2002).
    [Crossref]

2016 (1)

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

2015 (5)

2014 (6)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” Opt. Lett. 39, 84 (2014).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

2013 (4)

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
[Crossref]

K. D. Heylman and R. H. Goldsmith, “Photothermal mapping and free-space laser tuning of toroidal optical microcavities,” Appl. Phys. Lett. 103, 211116 (2013).
[Crossref]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592 (2013).
[Crossref] [PubMed]

2012 (4)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

M. Sumetsky, Y. Dulashko, and R. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868 (2010).
[Crossref] [PubMed]

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

2009 (3)

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photon. 3, 478–483 (2009).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

2008 (2)

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2005 (2)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

M.-C. Lee and M. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

2004 (2)

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

2003 (2)

L. Yang, D. Armani, and K. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826 (2003).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

2002 (1)

P. Slade and E. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 µ m–40 µ m) electrical contacts,” IEEE Trans. Comp. Packag. Technol. 25, 390–396 (2002).
[Crossref]

Abdulla, S.

Andrews, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Andronico, A.

Anetsberger, G.

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

Appel, J.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Arcizet, O.

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, A. M.

Armani, D.

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

L. Yang, D. Armani, and K. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826 (2003).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bagci, T.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Baker, C.

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Baker, N.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Berenschot, E.

Beyazoglu, T.

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

Bhave, S. A.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Blasius, T. D.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bowen, W.

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Bowen, W. P.

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2015).

Brawley, G. A.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Cicak, K.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Cohen, J.

de Boer, M.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

de Ridder, R.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Dijkstra, M.

Driessen, A.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Ducci, S.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Dulashko, Y.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dutt, A.

Errando-Herranz, C.

Fan, L.

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
[Crossref]

Farsi, A.

Favero, I.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Fink, J. M.

Fong, K. Y.

Forstner, S.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

Geuzebroek, D. H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Ghosh, S.

Gil-Santos, E.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Goldsmith, R. H.

K. D. Heylman and R. H. Goldsmith, “Photothermal mapping and free-space laser tuning of toroidal optical microcavities,” Appl. Phys. Lett. 103, 211116 (2013).
[Crossref]

Gomez, C.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Grine, A. J.

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

Grutter, K. E.

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

Gylfason, K. B.

Harris, G.

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Harris, G. I.

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

Hease, W.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

Heylman, K. D.

K. D. Heylman and R. H. Goldsmith, “Photothermal mapping and free-space laser tuning of toroidal optical microcavities,” Appl. Phys. Lett. 103, 211116 (2013).
[Crossref]

Hill, J. T.

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Humphreys, C. L.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Jansen, H.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Jiang, X.

Jung, H.

Kauppinen, L.

Kelderman, H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Kippenberg, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Kippenberg, S. Spillane, D. Armani, and K. Vahala, “Ultralow-threshold microcavity raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

Klein, E. J.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Knittel, J.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Krijnen, G.

KumarSelvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Lee, K.

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Lee, M.-C.

M.-C. Lee and M. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

Lehnert, K. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Lei, C. U.

Lemaitre, A.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Leo, G.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photon. 3, 478–483 (2009).
[Crossref]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Lipson, M.

S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23, 21527–21540 (2015).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Luke, K.

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

MayerAlegre, T. P.

McAuslan, D. L.

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

McRae, T.

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

Meenehan, S.

Milburn, G. J.

W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2015).

Miller, S. A.

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Nguyen, C. T.-C.

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

Nguyen, D. T.

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

Nguyen, D.-T.

Niklaus, F.

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Okawachi, Y.

Painter, O.

Peterson, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Piazza, G.

Pitanti, A.

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Polzik, E. S.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Purdy, T. P.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Ramelow, S.

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Regal, C. A.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Rivière, R.

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

Rocheleau, T. O.

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photon. 3, 478–483 (2009).
[Crossref]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Sachkou, Y.

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

Safavi-Naeini, A. H.

Schliesser, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schmid, S.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Sejil, S.

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

Senellart, P.

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

Sengo, G.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Sheridan, E.

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Simmonds, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Simonsen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Slade, P.

P. Slade and E. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 µ m–40 µ m) electrical contacts,” IEEE Trans. Comp. Packag. Technol. 25, 390–396 (2002).
[Crossref]

Sorensen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Spillane, S.

Sridaran, S.

Stemme, G.

Stobbe, S.

Sumetsky, M.

Sun, X.

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
[Crossref]

Tang, H. X.

H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” Opt. Lett. 39, 84 (2014).
[Crossref]

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
[Crossref]

Taylor, E.

P. Slade and E. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 µ m–40 µ m) electrical contacts,” IEEE Trans. Comp. Packag. Technol. 25, 390–396 (2002).
[Crossref]

Taylor, J. M.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Tredicucci, A.

Usami, K.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Vahala, K.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Villanueva, L. G.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Windeler, R.

Winger, M.

Wu, M.

M.-C. Lee and M. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

Wu, M. C.

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

Xiong, C.

H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” Opt. Lett. 39, 84 (2014).
[Crossref]

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Yang, L.

L. Yang, D. Armani, and K. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826 (2003).
[Crossref]

Zeuthen, E.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Zhang, X.

Adv. Mater. (1)

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

C. Xiong, L. Fan, X. Sun, and H. X. Tang, “Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators,” Appl. Phys. Lett. 102, 021110 (2013).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

K. D. Heylman and R. H. Goldsmith, “Photothermal mapping and free-space laser tuning of toroidal optical microcavities,” Appl. Phys. Lett. 103, 211116 (2013).
[Crossref]

L. Yang, D. Armani, and K. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83, 825–826 (2003).
[Crossref]

D. T. Nguyen, C. Baker, W. Hease, S. Sejil, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield,” Appl. Phys. Lett. 103, 241112 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

M.-C. Lee and M. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

IEEE Trans. Comp. Packag. Technol. (1)

P. Slade and E. Taylor, “Electrical breakdown in atmospheric air between closely spaced (0.2 µ m–40 µ m) electrical contacts,” IEEE Trans. Comp. Packag. Technol. 25, 390–396 (2002).
[Crossref]

Laser & Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotech. (1)

E. Gil-Santos, C. Baker, D. T. Nguyen, W. Hease, C. Gomez, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High-frequency nano-optomechanical disk resonators in liquids,” Nat. Nanotech. 10, 810–816 (2015).
[Crossref]

Nat. Photon. (3)

G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photon. 2, 627–633 (2008).
[Crossref]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photon. 3, 478–483 (2009).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photon. 6, 369–373 (2012).
[Crossref]

Nature (4)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63–67 (2012).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Nature Phys. (2)

G. I. Harris, D. L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, and W. P. Bowen, “Laser cooling and control of excitations in superfluid helium,” Nature Phys. 12, 788–793 (2016).
[Crossref]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014).
[Crossref]

Opt. Express (9)

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592 (2013).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).
[Crossref] [PubMed]

S. Ghosh and G. Piazza, “Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators,” Opt. Express 23, 15477 (2015).
[Crossref] [PubMed]

S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19, 9020–9026 (2011).
[Crossref] [PubMed]

S. Abdulla, L. Kauppinen, M. Dijkstra, M. de Boer, E. Berenschot, H. Jansen, R. de Ridder, and G. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19, 15864 (2011).
[Crossref] [PubMed]

M. Winger, T. D. Blasius, T. P. MayerAlegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19, 24905–24921 (2011).
[Crossref]

S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23, 21527–21540 (2015).
[Crossref] [PubMed]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22, 14072–14086 (2014).
[Crossref] [PubMed]

A. Pitanti, J. M. Fink, A. H. Safavi-Naeini, J. T. Hill, C. U. Lei, A. Tredicucci, and O. Painter, “Strong opto-electromechanical coupling in a silicon photonic crystal cavity,” Opt. Express 23, 3196–3208 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (3)

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

K. Lee, T. McRae, G. Harris, J. Knittel, and W. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Other (3)

W. P. Bowen and G. J. Milburn, Quantum Optomechanics (CRC Press, 2015).

T. Beyazoglu, T. O. Rocheleau, K. E. Grutter, A. J. Grine, M. C. Wu, and C. T.-C. Nguyen, “A multi-material Q-boosted low phase noise optomechanical oscillator,” in “2014 IEEE 27th International Conference on MEMS,” (IEEE, 2014), pp. 1193–1196.

E. Gil-Santos, C. Baker, A. Lemaitre, C. Gomez, S. Ducci, G. Leo, and I. Favero, “High-precision spectral tuning of micro and nanophotonic cavities by resonantly enhanced photoelectrochemical etching,” arXiv:1511.06186 [physics] (2015). ArXiv: 1511.06186.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Microtoroid based COEMS. (a) Schematic top view of the microtoroid COEMS displaying the relevant dimensions: microtoroid major radius R, microtoroid minor diameter d, electrode gap g and undercut silicon pedestal radius Rp. The gold electrodes have a nominal width of 5 microns. (b) Optical microscope side-view of a fabricated device. This image was obtained by combining 10 individual images taken at different focus to overcome the shallow depth of field (focus stacking).
Fig. 2
Fig. 2 (a) Schematic cross section of the microtoroid COEMS. Color code represents the mechanical displacement caused by an applied voltage. Zoomed in view shows the electrodes positioned on either side of the slot etched in the silica. Here the color code represents the electric energy density εE2 when a bias voltage is applied. (b) Top panel: calculated capacitance as a function of electrode gap g. The dots correspond to the results of individual FEM simulations, while the solid line is a fit to the simulation. Lower panel: Calculated force Fcap/V2, obtained from C(x) through Eq. (1).
Fig. 3
Fig. 3 Main microfabrication steps for the silica microtoroid COEMS.
Fig. 4
Fig. 4 (a) Microtoroid WGM resonance near 1550 nm, showing an intrinsic Q factor of 4.5 × 107. (b) Schematic of the experimental setup used to probe the cavity opto-electromechanical devices. A bias tee allows for the application of both a DC and AC bias on the electrodes. FPC: Fiber polarization controller; PD: photodetector; SA: spectrum analyzer. The inset shows an optical microscope sideview of a microtoroid COEMS positioned in front of the coupling fiber taper, and below two tungsten probe tips. All measurements are performed in air at room temperature. (c) Tunability curve showing optical resonance frequency shift as a function of the square of the applied DC voltage. The red line is a fit to the data. The maximum tuning range reaches approximately 20 linewidths for the largest DC bias.
Fig. 5
Fig. 5 (a) Mechanical “radial breathing mode”-like resonance of the slotted microtoroid near 18 MHz. Blue line: data, red line: lorentzian fit to the data, with fitted mechanical Q ≃ 180. FEM simulation of the mechanical displacement profile is shown as an inset. (b) Transient response of the device to a short duration voltage spike, measured on a WGM with Q ≃ 107. The black line is an exponential fit to the ringdown time. The noise in the normalized transmission is due to noise in the voltage generator and in the diode laser used for this experiment.
Fig. 6
Fig. 6 Improved microtoroid COEMS design. (a) Schematic illustration of a microtoroid resonator with patterned interdigitated concentric ring electrodes. (b) Cross-sectional view through the dashed red line in (a) revealing N=30 electrodes patterned over the silica disk. Color code represent the electrical potential with electrodes alternatively biased to 0 and 1 V. (c) FEM simulation representing the exaggerated mechanical deformation resulting from an applied bias between the electrodes. The structure deflects downwards and slightly outwards. (d) Schematic illustration of the influence of the dielectric medium under the electrodes. Despite the larger electrode separation, the left case can correspond to a lower energy state because of the higher effective dielectric constant between the electrodes.
Fig. 7
Fig. 7 (a) Breakdown voltage of the electrodes measured on 6 different devices. At breakdown, the joule heating resulting from the high electrical current density ablates the gold electrodes, which is readily visible through optical microscopy, as shown in the inset. Left image: before breakdown; right image after breakdown. (b) Theoretical breakdown voltage curve in air at 1 atmosphere, as a function of electrode gap distance. The solid line represents the classical Paschen curve, while the dashed blue line is the correction to small gaps for metal electrodes where the breakdown is dominated by electrode vaporization [41]. The red ellipse represents the approximate spread of our experimental data.
Fig. 8
Fig. 8 (a) Network response of a device acquired with VDC = 100 V. The largest response occurs at 1.9 MHz. The dashed red line is a fit to the data accounting for the device’s mechanical and optical susceptibility [33]. (b) Mechanical spectrum showing the main vibrational eigenmodes of a fabricated device. Inset: FEM simulations of mechanical modes. (c) SA measurement (see Fig. 4(b)) showing the RBM thermal peak and an AC drive tone at ωAC = 2π ×16.9 MHz (blue) and ωAC = 2π ×17.5 MHz (orange). (d) Time traces showing the normalized optical output (blue) of a device being driven with a 120 mVpp AC + 100V DC bias applied to the electrodes (top) and a 500mVpp AC + 100V DC bias (bottom); ωAC = 2π × 1.9 MHz, WGM has 80 percent contrast and loaded optical Q = 4 × 106.

Tables (1)

Tables Icon

Table 1 Parameters used in the FEM simulation of the interdigitated microtoroid COEMS design.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F cap = 1 2 d C ( x ) d x × V 2
Δ ω 0 = g om Δ x = g om F cap k 1 2 k ω 0 R d C ( x ) d x V 2 α V 2
C = ε 0 K A g F cap = ε 0 K A 2 g 2 V 2

Metrics