Abstract

Since systematic direct measurements of refractive index structure constant ( Cn2) for many climates and seasons are not available, an indirect approach is developed in which Cn2 is estimated from the mesoscale atmospheric model outputs. In previous work, we have presented an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and Forecasting (WRF) model coupled with Monin-Obukhov Similarity (MOS) theory which can be used to estimate surface layer Cn2 over the ocean. Here this paper is focused on surface layer Cn2 over snow and sea ice, which is the extending of estimating surface layer Cn2 utilizing WRF model for ground-based optical application requirements. This powerful approach is validated against the corresponding 9-day Cn2 data from a field campaign of the 30th Chinese National Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess how this approach performs. Besides, we present an independent analysis of this approach performance using the contingency tables. Such a method permits us to provide supplementary key information with respect to statistical operators. These methods make our analysis more robust and permit us to confirm the excellent performances of this approach. The reasonably good agreement in trend and magnitude is found between estimated values and measurements overall, and the estimated Cn2 values are even better than the ones obtained by this approach over the ocean surface layer. The encouraging performance of this approach has a concrete practical implementation of ground-based optical applications over snow and sea ice.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimating Cn2 over snow and sea ice from meteorological data

Edgar L Andreas
J. Opt. Soc. Am. A 5(4) 481-495 (1988)

Validation of refractive index structure parameter estimation for certain infrared bands

Mustafa Sivaslıgil, Cemil Berin Erol, Özgür Murat Polat, and Hüseyin Sarı
Appl. Opt. 52(14) 3127-3133 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  2. J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
    [Crossref]
  3. E. Masciadri, J. Vernin, and P. Bougeault, “3D numerical simulations of optical turbulence at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh,” A&A. 365, 699–708 (2001).
    [Crossref]
  4. E. Masciadri, “Near ground wind simulations by a meso-scale atmospherical model for the extremely large telescopes site selection,” Rev. Mex. Astron. Astrofis. 39, 249–259 (2003).
  5. E. Masciadri and F. Lascaux, “MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones),” Proc. SPIE 8447, 84475A (2012).
    [Crossref]
  6. F. Lascaux, E. Masciadri, and L. Fini, “MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0–30 m,” MNRAS 436, 3147–3166 (2013).
    [Crossref]
  7. F. Lascaux, E. Masciadri, and L. Fini, “Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model,” MNRAS. 449, 1664–1678 (2015).
    [Crossref]
  8. S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
    [Crossref]
  9. J. C. Wyngaard, On surface-layer turbulence (American Meteorological Society, Boston, Mass., 1973).
  10. M. L. Wesely and E. C. Alcaraz, “Diurnal cycles of the refractive index structure function coefficient,” J. Geophys. Res. 78(27), 6224–6232 (1973).
    [Crossref]
  11. K. L. Davidson, G. E. Schacher, C. W. Fairall, and A. K. Goroch, “Verification of the bulk method for calculating overwater optical turbulence,” Appl. Opt. 20(17), 2919–2924 (1981).
    [Crossref] [PubMed]
  12. K. E. Kunkel and D. L. Walters, “Modeling the diurnal dependence of the optical refractive index structure parameter,” J. Geophys. Res. 88(C15), 10999–11004 (1983).
    [Crossref]
  13. E. L. Andreas, “Estimating Cn2 over snow and ice from meteorological data,” J. Opt. Soc. Am. A 5(4), 481–495 (1988).
    [Crossref]
  14. D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38(8), 1288–1295 (1999).
    [Crossref]
  15. P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
    [Crossref]
  16. A. Tunick, “Cn2 model to calculate the micrometeorological influences on the refractive index structure parameter,” Environ. Model. Softw. 18, 165–171 (2003).
    [Crossref]
  17. V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).
  18. V. V. Nosov, V. P. Lukin, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in the atmospheric anisotropic boundary layer (for mountain region),” Proc. conference “Vision for infrared astronomy,”France, 155–160 (2006).
  19. C. Qing, X. Wu, X. Li, W. Zhu, C. Qiao, R. Rao, and H. Mei, “Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean,” Opt. Express 24(12), 13303–13315 (2016).
    [Crossref] [PubMed]
  20. D. S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic Press, 1995).
  21. J. E. Thornes and D. B. Stephenson, “How to judge the quality and value of weather forecast products,” Meteorol. Appl. 8, 307–314 (2001).
    [Crossref]
  22. I. T. Jolliffe and D. B. Stephenson, Forecast Verification. A Practitioner’s Guide in Atmospheric Science2nd ed. (Wiley, 2003).
  23. X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).
  24. Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).
  25. C. E. Coulman, “A quantitative treatment of solar ‘seeing’ I,” Solar Physics. 7, 122–143 (1969).
    [Crossref]
  26. R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).
  27. W. G. Large and S. Pond, “Sensible and latent heat flux measurements over the ocean,” J. Phys. Oceanogr. 12, 464–482 (1982).
    [Crossref]
  28. C. A. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
    [Crossref]
  29. C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
    [Crossref]
  30. L. Mahrt, “Stratified atmospheric boundary layers,” Boundary-Layer Meteor 90, 375–396 (1999).
    [Crossref]
  31. J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
    [Crossref]

2016 (1)

2015 (3)

F. Lascaux, E. Masciadri, and L. Fini, “Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model,” MNRAS. 449, 1664–1678 (2015).
[Crossref]

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

2013 (1)

F. Lascaux, E. Masciadri, and L. Fini, “MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0–30 m,” MNRAS 436, 3147–3166 (2013).
[Crossref]

2012 (1)

E. Masciadri and F. Lascaux, “MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones),” Proc. SPIE 8447, 84475A (2012).
[Crossref]

2011 (1)

S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
[Crossref]

2004 (2)

J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
[Crossref]

V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).

2003 (2)

A. Tunick, “Cn2 model to calculate the micrometeorological influences on the refractive index structure parameter,” Environ. Model. Softw. 18, 165–171 (2003).
[Crossref]

E. Masciadri, “Near ground wind simulations by a meso-scale atmospherical model for the extremely large telescopes site selection,” Rev. Mex. Astron. Astrofis. 39, 249–259 (2003).

2001 (2)

E. Masciadri, J. Vernin, and P. Bougeault, “3D numerical simulations of optical turbulence at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh,” A&A. 365, 699–708 (2001).
[Crossref]

J. E. Thornes and D. B. Stephenson, “How to judge the quality and value of weather forecast products,” Meteorol. Appl. 8, 307–314 (2001).
[Crossref]

2000 (1)

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
[Crossref]

1999 (2)

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38(8), 1288–1295 (1999).
[Crossref]

L. Mahrt, “Stratified atmospheric boundary layers,” Boundary-Layer Meteor 90, 375–396 (1999).
[Crossref]

1996 (2)

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

1991 (1)

J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
[Crossref]

1988 (1)

1983 (1)

K. E. Kunkel and D. L. Walters, “Modeling the diurnal dependence of the optical refractive index structure parameter,” J. Geophys. Res. 88(C15), 10999–11004 (1983).
[Crossref]

1982 (1)

W. G. Large and S. Pond, “Sensible and latent heat flux measurements over the ocean,” J. Phys. Oceanogr. 12, 464–482 (1982).
[Crossref]

1981 (1)

1973 (1)

M. L. Wesely and E. C. Alcaraz, “Diurnal cycles of the refractive index structure function coefficient,” J. Geophys. Res. 78(27), 6224–6232 (1973).
[Crossref]

1970 (1)

C. A. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
[Crossref]

1969 (1)

C. E. Coulman, “A quantitative treatment of solar ‘seeing’ I,” Solar Physics. 7, 122–143 (1969).
[Crossref]

Alcaraz, E. C.

M. L. Wesely and E. C. Alcaraz, “Diurnal cycles of the refractive index structure function coefficient,” J. Geophys. Res. 78(27), 6224–6232 (1973).
[Crossref]

Andreas, E. L.

Ashley, M. C. B.

J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
[Crossref]

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Azouit, M.

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Beljaars, A.

S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
[Crossref]

Bendall, C. S.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
[Crossref]

Bougeault, P.

E. Masciadri, J. Vernin, and P. Bougeault, “3D numerical simulations of optical turbulence at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh,” A&A. 365, 699–708 (2001).
[Crossref]

Bradley, E. F.

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

Briggs, J. W.

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Burton, M. G.

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Cai, J.

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Chai, B.

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Cheinet, S.

S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
[Crossref]

Coulman, C. E.

C. E. Coulman, “A quantitative treatment of solar ‘seeing’ I,” Solar Physics. 7, 122–143 (1969).
[Crossref]

Davidson, K. L.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
[Crossref]

K. L. Davidson, G. E. Schacher, C. W. Fairall, and A. K. Goroch, “Verification of the bulk method for calculating overwater optical turbulence,” Appl. Opt. 20(17), 2919–2924 (1981).
[Crossref] [PubMed]

Edson, J. B.

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
[Crossref]

Emaleev, O. N.

V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).

V. V. Nosov, V. P. Lukin, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in the atmospheric anisotropic boundary layer (for mountain region),” Proc. conference “Vision for infrared astronomy,”France, 155–160 (2006).

Fairall, C. W.

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
[Crossref]

K. L. Davidson, G. E. Schacher, C. W. Fairall, and A. K. Goroch, “Verification of the bulk method for calculating overwater optical turbulence,” Appl. Opt. 20(17), 2919–2924 (1981).
[Crossref] [PubMed]

Fini, L.

F. Lascaux, E. Masciadri, and L. Fini, “Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model,” MNRAS. 449, 1664–1678 (2015).
[Crossref]

F. Lascaux, E. Masciadri, and L. Fini, “MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0–30 m,” MNRAS 436, 3147–3166 (2013).
[Crossref]

Frederickson, P. A.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
[Crossref]

Goroch, A. K.

Hurt, Y.

S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
[Crossref]

Hutt, D. L.

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38(8), 1288–1295 (1999).
[Crossref]

Ji, T.

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Jiang, P.

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Jin, X.

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Jolliffe, I. T.

I. T. Jolliffe and D. B. Stephenson, Forecast Verification. A Practitioner’s Guide in Atmospheric Science2nd ed. (Wiley, 2003).

Kunkel, K. E.

K. E. Kunkel and D. L. Walters, “Modeling the diurnal dependence of the optical refractive index structure parameter,” J. Geophys. Res. 88(C15), 10999–11004 (1983).
[Crossref]

Large, W. G.

W. G. Large and S. Pond, “Sensible and latent heat flux measurements over the ocean,” J. Phys. Oceanogr. 12, 464–482 (1982).
[Crossref]

Larsen, S. E.

J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
[Crossref]

Lascaux, F.

F. Lascaux, E. Masciadri, and L. Fini, “Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model,” MNRAS. 449, 1664–1678 (2015).
[Crossref]

F. Lascaux, E. Masciadri, and L. Fini, “MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0–30 m,” MNRAS 436, 3147–3166 (2013).
[Crossref]

E. Masciadri and F. Lascaux, “MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones),” Proc. SPIE 8447, 84475A (2012).
[Crossref]

Lawrence, J. S.

J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
[Crossref]

Li, X.

Lu, S.

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Lukin, V. P.

V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).

V. V. Nosov, V. P. Lukin, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in the atmospheric anisotropic boundary layer (for mountain region),” Proc. conference “Vision for infrared astronomy,”France, 155–160 (2006).

Mahrt, L.

L. Mahrt, “Stratified atmospheric boundary layers,” Boundary-Layer Meteor 90, 375–396 (1999).
[Crossref]

Manigault, J. F.

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Marks, R. D.

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Masciadri, E.

F. Lascaux, E. Masciadri, and L. Fini, “Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model,” MNRAS. 449, 1664–1678 (2015).
[Crossref]

F. Lascaux, E. Masciadri, and L. Fini, “MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0–30 m,” MNRAS 436, 3147–3166 (2013).
[Crossref]

E. Masciadri and F. Lascaux, “MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones),” Proc. SPIE 8447, 84475A (2012).
[Crossref]

E. Masciadri, “Near ground wind simulations by a meso-scale atmospherical model for the extremely large telescopes site selection,” Rev. Mex. Astron. Astrofis. 39, 249–259 (2003).

E. Masciadri, J. Vernin, and P. Bougeault, “3D numerical simulations of optical turbulence at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh,” A&A. 365, 699–708 (2001).
[Crossref]

Mei, H.

Mestayer, P. G.

J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
[Crossref]

Nosov, E. V.

V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).

V. V. Nosov, V. P. Lukin, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in the atmospheric anisotropic boundary layer (for mountain region),” Proc. conference “Vision for infrared astronomy,”France, 155–160 (2006).

Nosov, V. V.

V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).

V. V. Nosov, V. P. Lukin, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in the atmospheric anisotropic boundary layer (for mountain region),” Proc. conference “Vision for infrared astronomy,”France, 155–160 (2006).

Paulson, C. A.

C. A. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
[Crossref]

Pond, S.

W. G. Large and S. Pond, “Sensible and latent heat flux measurements over the ocean,” J. Phys. Oceanogr. 12, 464–482 (1982).
[Crossref]

Qiao, C.

Qing, C.

C. Qing, X. Wu, X. Li, W. Zhu, C. Qiao, R. Rao, and H. Mei, “Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean,” Opt. Express 24(12), 13303–13315 (2016).
[Crossref] [PubMed]

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Rao, R.

Rogers, D. P.

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

Schacher, G. E.

Stephenson, D. B.

J. E. Thornes and D. B. Stephenson, “How to judge the quality and value of weather forecast products,” Meteorol. Appl. 8, 307–314 (2001).
[Crossref]

I. T. Jolliffe and D. B. Stephenson, Forecast Verification. A Practitioner’s Guide in Atmospheric Science2nd ed. (Wiley, 2003).

Tatarskii, V. I.

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

Thornes, J. E.

J. E. Thornes and D. B. Stephenson, “How to judge the quality and value of weather forecast products,” Meteorol. Appl. 8, 307–314 (2001).
[Crossref]

Tian, Q.

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Tokovinin, A.

J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
[Crossref]

Travouillon, T.

J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
[Crossref]

Tunick, A.

A. Tunick, “Cn2 model to calculate the micrometeorological influences on the refractive index structure parameter,” Environ. Model. Softw. 18, 165–171 (2003).
[Crossref]

Vernin, J.

E. Masciadri, J. Vernin, and P. Bougeault, “3D numerical simulations of optical turbulence at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh,” A&A. 365, 699–708 (2001).
[Crossref]

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Walters, D. L.

K. E. Kunkel and D. L. Walters, “Modeling the diurnal dependence of the optical refractive index structure parameter,” J. Geophys. Res. 88(C15), 10999–11004 (1983).
[Crossref]

Weiss-Wrana, K.

S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
[Crossref]

Wesely, M. L.

M. L. Wesely and E. C. Alcaraz, “Diurnal cycles of the refractive index structure function coefficient,” J. Geophys. Res. 78(27), 6224–6232 (1973).
[Crossref]

Wilks, D. S.

D. S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic Press, 1995).

Wu, X.

C. Qing, X. Wu, X. Li, W. Zhu, C. Qiao, R. Rao, and H. Mei, “Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean,” Opt. Express 24(12), 13303–13315 (2016).
[Crossref] [PubMed]

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Wyngaard, J. C.

J. C. Wyngaard, On surface-layer turbulence (American Meteorological Society, Boston, Mass., 1973).

Young, G. S.

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

Zeisse, C. R.

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
[Crossref]

Zhang, S.

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Zhou, H.

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Zhu, W.

A&A. (1)

E. Masciadri, J. Vernin, and P. Bougeault, “3D numerical simulations of optical turbulence at the Roque de Los Muchachos Observatory using the atmospherical model Meso-Nh,” A&A. 365, 699–708 (2001).
[Crossref]

Adv. Polar. Sci. (2)

X. Wu, Q. Tian, P. Jiang, B. Chai, C. Qing, J. Cai, X. Jin, and H. Zhou, “A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer,” Adv. Polar. Sci. 26(4), 305–310 (2015).

Q. Tian, P. Jiang, X. Wu, X. Jin, S. Lu, T. Ji, B. Chai, S. Zhang, and H. Zhou, “A mobile polar atmospheric parameter measurement system: II. First atmospheric turbulence observation at Antarctic Taishan Station,” Adv. Polar. Sci. 26(2), 140–146 (2015).

Appl. Opt. (1)

Astronomy Astrophys. (1)

R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, and J. F. Manigault, “Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole,” Astronomy Astrophys. 118, 385–390 (1996).

Boundary-Layer Meteor (1)

L. Mahrt, “Stratified atmospheric boundary layers,” Boundary-Layer Meteor 90, 375–396 (1999).
[Crossref]

Boundary-Layer Meteor. (1)

S. Cheinet, A. Beljaars, K. Weiss-Wrana, and Y. Hurt, “The use of weather forecasts to characterise near-surface optical turbulence,” Boundary-Layer Meteor. 138, 453–473 (2011).
[Crossref]

Environ. Model. Softw. (1)

A. Tunick, “Cn2 model to calculate the micrometeorological influences on the refractive index structure parameter,” Environ. Model. Softw. 18, 165–171 (2003).
[Crossref]

J. Appl. Meteorol. (2)

C. A. Paulson, “The mathematical representation of wind speed and temperature profiles in the unstable surface layer,” J. Appl. Meteorol. 9, 857–861 (1970).
[Crossref]

P. A. Frederickson, K. L. Davidson, C. R. Zeisse, and C. S. Bendall, “Estimating the refractive index structure parameters (Cn2) over the ocean using bulk methods,” J. Appl. Meteorol. 39, 1770–1783 (2000).
[Crossref]

J. Geophys. Res. (4)

C. W. Fairall, E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, “Bulk parameterization of airsea fluxes for tropical oceanglobal atmosphere coupledocean atmosphere response experiment,” J. Geophys. Res. 101(C2), 3747–3764 (1996).
[Crossref]

J. B. Edson, C. W. Fairall, P. G. Mestayer, and S. E. Larsen, “A study of the inertial-dissipation method for computing air-sea fluxes,” J. Geophys. Res. 96, 10689–10711 (1991).
[Crossref]

M. L. Wesely and E. C. Alcaraz, “Diurnal cycles of the refractive index structure function coefficient,” J. Geophys. Res. 78(27), 6224–6232 (1973).
[Crossref]

K. E. Kunkel and D. L. Walters, “Modeling the diurnal dependence of the optical refractive index structure parameter,” J. Geophys. Res. 88(C15), 10999–11004 (1983).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Oceanogr. (1)

W. G. Large and S. Pond, “Sensible and latent heat flux measurements over the ocean,” J. Phys. Oceanogr. 12, 464–482 (1982).
[Crossref]

Meteorol. Appl. (1)

J. E. Thornes and D. B. Stephenson, “How to judge the quality and value of weather forecast products,” Meteorol. Appl. 8, 307–314 (2001).
[Crossref]

MNRAS (1)

F. Lascaux, E. Masciadri, and L. Fini, “MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites - II. Atmospheric parameters in the surface layer 0–30 m,” MNRAS 436, 3147–3166 (2013).
[Crossref]

MNRAS. (1)

F. Lascaux, E. Masciadri, and L. Fini, “Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model,” MNRAS. 449, 1664–1678 (2015).
[Crossref]

Nature (1)

J. S. Lawrence, M. C. B. Ashley, A. Tokovinin, and T. Travouillon, “Exceptional astronomical seeing conditions above Dome C in Antarctica,” Nature 431(7006), 278–281 (2004).
[Crossref]

Opt. Eng. (1)

D. L. Hutt, “Modeling and measurements of atmospheric optical turbulence over land,” Opt. Eng. 38(8), 1288–1295 (1999).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

E. Masciadri and F. Lascaux, “MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones),” Proc. SPIE 8447, 84475A (2012).
[Crossref]

V. P. Lukin, V. V. Nosov, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer,” Proc. SPIE 5743, 110–130 (2004).

Rev. Mex. Astron. Astrofis. (1)

E. Masciadri, “Near ground wind simulations by a meso-scale atmospherical model for the extremely large telescopes site selection,” Rev. Mex. Astron. Astrofis. 39, 249–259 (2003).

Solar Physics. (1)

C. E. Coulman, “A quantitative treatment of solar ‘seeing’ I,” Solar Physics. 7, 122–143 (1969).
[Crossref]

Other (5)

D. S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic Press, 1995).

I. T. Jolliffe and D. B. Stephenson, Forecast Verification. A Practitioner’s Guide in Atmospheric Science2nd ed. (Wiley, 2003).

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

J. C. Wyngaard, On surface-layer turbulence (American Meteorological Society, Boston, Mass., 1973).

V. V. Nosov, V. P. Lukin, O. N. Emaleev, and E. V. Nosov, “Semiempirical hypotheses of the turbulence theory in the atmospheric anisotropic boundary layer (for mountain region),” Proc. conference “Vision for infrared astronomy,”France, 155–160 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Mobile atmospheric parameter measurement system over snow and sea ice at Antarctic Taishan Station.
Fig. 2
Fig. 2 Antarctic Plateau map. The site of mobile atmospheric parameter measurement system is noted with a red solid star. The blue solid circles represent the Dome A, Dome C and Dome F, respectively.
Fig. 3
Fig. 3 Temporal evolution of the surface layer C n 2 (about 2 m) over snow and sea ice during January 11 to 19, 2014 (panels a–c depict simulations No.1–3, respectively). The red open star and the black dots represent the model and micro-thermometer, respectively.
Fig. 4
Fig. 4 Statistical analysis of the surface layer C n 2 over snow and sea ice for model and micro-thermometer. (a) The correlation between model (abscissa) and micro-thermometer (ordinate); (b) The histograms (black histogram, left scale) and cumulative distributions (blue symbol curves, right scale) of log 10 ( C n 2 ), the top and bottom panels for model and micro-thermometer, respectively.

Tables (5)

Tables Icon

Table 1 The basic parameter settings. ΔX represents the grid horizontal resolution.

Tables Icon

Table 2 The main physical scheme settings.

Tables Icon

Table 3 Simulation times.

Tables Icon

Table 4 Generic 3 × 3 contingency table.

Tables Icon

Table 5 A 3×3 contingency table for log 10 ( C n 2 ) between model (row) and micro-thermometer (column)a. Interval 1 represents log 10 ( C n 2 ) 14.803, interval 2 represents 14.803 log 10 ( C n 2 ) 14.348, interval 3 represents log 10 ( C n 2 ) 14.348. This two thresholds (−14.803 and −14.348) are defined with the climatological tertiles [6].

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

C n 2 = ( 79 × 10 6 P T 2 ) 2 C T 2 ,
D T ( r ) = [ T ( x ) T ( x + r ) ] 2 = C T 2 r 2 / 3 for l 0 r L 0 .
C n 2 = A 2 C T 2 + 2 A B C T q + B 2 C q 2 .
ξ = z k g ( T * + 0.61 T q * ) ϑ v u * 2 .
C T 2 = T * 2 z 2 / 3 f T ( ξ ) ,
C q 2 = q * 2 z 2 / 3 f q ( ξ ) ,
C T q = γ T q T * q * z 2 / 3 f T q ( ξ ) .
f ( ξ ) = { 4.9 ( 1 7 ξ ) 2 / 3 , ξ 0 , 4.9 ( 2.75 ξ ) , ξ 0 .
C n 2 = z 2 / 3 f ( ξ ) ( A 2 T * 2 + 2 A B γ T q T * q * + B 2 q * 2 ) .
U ( z ) z = u * k z φ m ( ξ ) ,
T ( z ) z = T * k z φ h ( ξ ) ,
q ( z ) z = q * k z φ q ( ξ ) ,
φ m ( ξ ) = ( 1 16 ξ ) 1 / 4 ,
φ h ( ξ ) = φ q ( ξ ) = ( 1 16 ξ ) 1 / 2 .
φ m ( ξ ) = φ h ( ξ ) = φ q ( ξ ) = 1 + 7 ξ .
u * = k U ( z ) [ ln ( z z o U ) Φ m ( ξ ) ] 1 ,
T * = k [ T ( z ) T s ] [ ln ( z z o T ) Φ h ( ξ ) ] 1 ,
q * = k [ q ( z ) q s ] [ ln ( z z o q ) Φ h ( ξ ) ] 1 ,
Φ m ( ξ ) = 2 ln [ 1 + x 2 ] + ln [ 1 + x 2 2 ] arctan ( x ) + π 2 ,
Φ h ( ξ ) = 2 ln [ 1 + x 2 2 ] .
Φ m ( ξ ) = Φ h ( ξ ) = 7 ξ .
bias = i = 0 N Δ i N ,
RMSE = i = 0 N ( Δ i ) 2 N ,
R x y = i = 0 N ( X i X ¯ i ) ( Y i Y ¯ i ) i = 0 N ( X i X ¯ i ) 2 i = 0 N ( Y i Y ¯ i ) 2 ,
σ = RMSE 2 bias 2 .
PC = a + e + i N × 100 , 0 % PC 100 % ,
POD ( event 1 ) = a a + d + g × 100 , 0 % POD 100 % ,
POD ( event 2 ) = e b + e + h × 100 , 0 % POD 100 % ,
POD ( event 3 ) = i c + f + i × 100 , 0 % POD 100 % ,
EBD = c + g N × 100 , 0 % EBD 100 % .

Metrics