Abstract

In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver’s side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Security analysis of practical continuous-variable quantum key distribution systems under laser seeding attack

Yi Zheng, Peng Huang, Anqi Huang, Jinye Peng, and Guihua Zeng
Opt. Express 27(19) 27369-27384 (2019)

Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution

Qin Liao, Yijun Wang, Duan Huang, and Ying Guo
Opt. Express 26(16) 19907-19920 (2018)

Monitoring of continuous-variable quantum key distribution system in real environment

Weiqi Liu, Jinye Peng, Peng Huang, Duan Huang, and Guihua Zeng
Opt. Express 25(16) 19429-19443 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
    [Crossref] [PubMed]
  2. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
    [Crossref] [PubMed]
  3. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
    [Crossref] [PubMed]
  4. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
    [Crossref] [PubMed]
  5. R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
    [Crossref] [PubMed]
  6. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
    [Crossref]
  7. A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
    [Crossref] [PubMed]
  8. R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
    [Crossref] [PubMed]
  9. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
    [Crossref] [PubMed]
  10. A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
    [Crossref]
  11. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  12. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
    [Crossref] [PubMed]
  13. D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
    [Crossref] [PubMed]
  14. C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
    [Crossref]
  15. S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
    [Crossref]
  16. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
    [Crossref] [PubMed]
  17. D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field demonstration of a continuous-variable quantum key distribution network,” Opt. Lett. 41, 3511–3514 (2016).
    [Crossref] [PubMed]
  18. X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
    [Crossref]
  19. X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
    [Crossref]
  20. J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
    [Crossref]
  21. J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
    [Crossref]
  22. H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
    [Crossref]
  23. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
    [Crossref]
  24. C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
    [Crossref]
  25. D. K. Lin, P. Huang, D. Huang, C. Wang, J. Y. Peng, and G. H. Zeng, “High performance frame synchronization for continuous variable quantum key distribution systems,” Opt. Express 23, 22190–22198 (2015).
    [Crossref] [PubMed]
  26. EV10AQ190 datasheet, “EV10AQ190A low power quad 10-bit 1.25 Gsps ADC operating up to 5 Gsps quadruple analog to digital converter,” http://www.e2v.com/products/semiconductors/adc/ev10aq190a/ .
  27. P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
    [Crossref]
  28. Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
    [Crossref]
  29. M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
    [Crossref]
  30. B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
    [Crossref]
  31. A. Andalib, A. Rostami, and N. Granpayeh, “Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers),” Progress In Electromagnetics Research 79, 119–136 (2008).
    [Crossref]

2016 (4)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
[Crossref]

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field demonstration of a continuous-variable quantum key distribution network,” Opt. Lett. 41, 3511–3514 (2016).
[Crossref] [PubMed]

2015 (4)

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

D. K. Lin, P. Huang, D. Huang, C. Wang, J. Y. Peng, and G. H. Zeng, “High performance frame synchronization for continuous variable quantum key distribution systems,” Opt. Express 23, 22190–22198 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

2014 (1)

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

2013 (6)

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

2012 (3)

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

2011 (1)

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

2010 (2)

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

2009 (3)

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

2008 (1)

A. Andalib, A. Rostami, and N. Granpayeh, “Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers),” Progress In Electromagnetics Research 79, 119–136 (2008).
[Crossref]

2007 (1)

B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

2006 (2)

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

2003 (1)

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

2002 (1)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Acín, A.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

Alléaume, R.

Andalib, A.

A. Andalib, A. Rostami, and N. Granpayeh, “Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers),” Progress In Electromagnetics Research 79, 119–136 (2008).
[Crossref]

Assche, G. V.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Brouri, R.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Cerf, N. J.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Chen, W.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Chi, Y-M.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Cirac, J. I.

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

Debuisschert, T.

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

Dunlop, A. E.

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

Fang, S.

Fossier, S.

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

García-Patrón, R.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Granpayeh, N.

A. Andalib, A. Rostami, and N. Granpayeh, “Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers),” Progress In Electromagnetics Research 79, 119–136 (2008).
[Crossref]

Grosshans, F.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Guo, G. C.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Han, Z. F.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Harb, C. C.

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

Heurs, M.

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

Huang, D.

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field demonstration of a continuous-variable quantum key distribution network,” Opt. Lett. 41, 3511–3514 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

D. K. Lin, P. Huang, D. Huang, C. Wang, J. Y. Peng, and G. H. Zeng, “High performance frame synchronization for continuous variable quantum key distribution systems,” Opt. Express 23, 22190–22198 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Huang, J. Z.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Huang, L. L.

B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Huang, P.

D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field demonstration of a continuous-variable quantum key distribution network,” Opt. Lett. 41, 3511–3514 (2016).
[Crossref] [PubMed]

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

D. K. Lin, P. Huang, D. Huang, C. Wang, J. Y. Peng, and G. H. Zeng, “High performance frame synchronization for continuous variable quantum key distribution systems,” Opt. Express 23, 22190–22198 (2015).
[Crossref] [PubMed]

Huntington, E. H.

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

Jiang, M. S.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Jouguet, P.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

Kumar, R.

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
[Crossref]

Kunz-Jacques, S.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

Leverrier, A.

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref] [PubMed]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

Li, H.

Li, H. W.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Liang, L. M.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

Lin, D.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

Lin, D. K.

Liu, W.

Lo, H-K.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Lvovsky, A. I.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Ma, X. C.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

Navascués, M.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

Pache, P.

Painchault, P.

Peng, J.

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Peng, J. Y.

Qi, B.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Qian, L.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Qin, H.

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
[Crossref]

Ralph, T. C.

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

Renner, R.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

Rostami, A.

A. Andalib, A. Rostami, and N. Granpayeh, “Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers),” Progress In Electromagnetics Research 79, 119–136 (2008).
[Crossref]

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Sun, S. H.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Tian, L.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Tualle-Brouri, R.

Villing, A.

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

Wang, C.

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. K. Lin, P. Huang, D. Huang, C. Wang, J. Y. Peng, and G. H. Zeng, “High performance frame synchronization for continuous variable quantum key distribution systems,” Opt. Express 23, 22190–22198 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

Wang, S.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Wang, T.

Webb, J. G.

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

Weedbrook, C.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Wenger, J.

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Yin, Z. Q.

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Youn, S-H.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Zeng, G.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field demonstration of a continuous-variable quantum key distribution network,” Opt. Lett. 41, 3511–3514 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

Zeng, G. H.

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. K. Lin, P. Huang, D. Huang, C. Wang, J. Y. Peng, and G. H. Zeng, “High performance frame synchronization for continuous variable quantum key distribution systems,” Opt. Express 23, 22190–22198 (2015).
[Crossref] [PubMed]

Zhou, Y.

Zhu, W.

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Nat. Photonics (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Nature (1)

F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

New J. Phys. (2)

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

Y-M. Chi, B. Qi, W. Zhu, L. Qian, H-K. Lo, S-H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (11)

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

M. Heurs, J. G. Webb, A. E. Dunlop, C. C. Harb, T. C. Ralph, and E. H. Huntington, “Multiplexed communication over a high-speed quantum channel,” Phys. Rev. A 81, 032325 (2010).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

J. Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

C. Wang, P. Huang, D. Huang, D. Lin, and G. H. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

Phys. Rev. Lett. (8)

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref] [PubMed]

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Progress In Electromagnetics Research (1)

A. Andalib, A. Rostami, and N. Granpayeh, “Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers),” Progress In Electromagnetics Research 79, 119–136 (2008).
[Crossref]

Sci. Rep. (2)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Other (1)

EV10AQ190 datasheet, “EV10AQ190A low power quad 10-bit 1.25 Gsps ADC operating up to 5 Gsps quadruple analog to digital converter,” http://www.e2v.com/products/semiconductors/adc/ev10aq190a/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The structure of Bob’s apparatus in previous CVQKD system. PBS: polarization beam splitter; PD: phtodiode; LO: local oscillator; PM: phase modulator; ψ: random phase of 0 or π/2; 10:90 and 50:50 (reflectivity:transmittance), beam splitters. Data Pre-Processing: a module of the data acquisition sub-system, used to obtain raw key from the output data of ADC; Data Post-Processing Sub-system: used to obtain final secret key, including reconciliation, decoding, error correction and privacy amplification procedures.
Fig. 2
Fig. 2 The structure of Bob’s apparatus in the proposed CVQKD system. PBS: polarization beam splitter; PD: photodiode; LO: local oscillator; PM: phase modulator; ψ: random phase of 0 or π/2; 10:90 and 50:50 (reflectivity:transmittance), beam splitters; DDM: Dynamic delay adjusting module; Data Pre-Processing: a module of data acquisition sub-system, used to obtain raw key from the output data of ADC; Data Post-Processing Sub-system: used to obtain final secret key, including reconciliation, decoding, error correction and privacy amplification procedures.
Fig. 3
Fig. 3 The estimated excess noise as a function of system repetition rate. The transmission distance L = 25 km and εreal = 0.04. From top to bottom, the three dashed curves are obtained with ts = 5 ps, 10 ps and 20 ps, while the three solid curves are obtained with fsamp = 5 GHz, 3 GHz and 1 GHz, respectively.
Fig. 4
Fig. 4 Secret key rates under different conditions. Parameters are set as: VA = 5N0, β = 0.95, ξ = 0.01N0, Vel = 0.01N0, PE = 10−10, N = 109, η = 0.6. (a) The secret key rate bound of CVQKD system as a function of distance. The system repetition rate fr =10 MHz, the three solid curves from left to right are obtained with fsamp = 1 GHz, 3 GHz and 5 GHz, corresponding to previous schemes. The three dashed curves are obtained with ts =5 ps, 10 ps and 20 ps, corresponding to the new scheme. (b) The secret key rate of CVQKD system as a function of the system repetition rate. The transmission distance L = 50 km.
Fig. 5
Fig. 5 The relative change of statistical power with the change of the tdly. Curves from top to bottom are obtained with fr = 10 MHz, 25 MHz, 50 MHz, 80 MHz, 100 MHz and ts is set to 10 ps.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

T r = M * t s + Δ t ,
P i = j = 1 L A i ( j ) 2 ,
t i = i * t s , i [ 0 , M 1 ] ,
P max = max { P i , i = 0 , 1 , 2 , , M 2 , M 1 } = P m 0 , m 0 [ 0 , 1 , 2 , , M 2 , M 1 ] .
t final = | t init m 0 * t s | = Δ t 0 ,
r ( t ) = A p e ( t μ ) 2 / ( 2 σ 2 ) ,
A s = A p e 8 δ 2 ,
E norml = 1 e 8 δ 2 .
y = t x + z ,
x 2 = V A , x y = η T V A ,
y 2 = η T ( V A + ξ ) + N 0 + V el ,
t ^ = i = 1 m x i y i i = 1 m x i 2 ,
σ ^ z 2 = 1 m i = 1 m ( y i t ^ x i ) 2 ,
V ^ A = 1 m i = 1 m x i 2 .
t ^ ~ 𝒩 ( t , σ z 2 i = 1 m x i 2 ) ,
m σ ^ z 2 σ z 2 , m V ^ A V A ~ χ 2 ( m 1 ) ,
t [ t ^ Δ T , t ^ + Δ T ] ,
σ z 2 [ σ ^ z 2 Δ σ z 2 , σ ^ z 2 + Δ σ z 2 ] ,
V A [ V ^ A Δ V A , V ^ A + Δ V A ] ,
erf ( x ) = 2 π 0 x e t 2 d t .
T = t ^ 2 / η ,
ξ = ( σ ^ z 2 N 0 V el ) / t ^ 2 .
x 2 = V A , x y real = e 8 δ 2 η T real V A ,
y real 2 = e 16 δ 2 [ η T real ( V A + ξ real ) + N 0 ] + V el .
x y = x y real ,
y 2 = y real 2 .
η T est V A = e 8 δ 2 η T real V A ,
η T est ( V A + ξ est ) + N 0 + V el = e 16 δ 2 [ η T real ( V A + ξ real ) + N 0 ] + V el ,
T real = e 16 δ 2 T est ,
ξ real = ξ est + 1 η T est ( 1 e 16 δ 2 ) N 0 ,
B f ( z ) = [ 1 + 1 4 σ 4 ( 0 z β 2 ( z ) d z ) 2 ] 1 / 2 ,
T real = e 1600 f r 2 t s 2 T est ,
ξ real = ξ est + 1 η T est ( 1 e 1600 f r 2 t s 2 ) N 0 .
ε real = ε e s t + 1 η T est ( 1 e 1600 f r 2 t s 2 ) .
ε f s b = ε real ε est = 1 η T est ( 1 e 1600 f r 2 t s 2 ) .
K finite = n N [ β I ( X : Y ) S PE ( Y : E ) Δ ( n ) ] ,
R finite = f r * K finite ,
A sdly = A p exp [ 8 ( 2 t dly + t s ) 2 / t p 2 ] ,
r = A sdly / A s = exp [ 32 t dly ( t dly + t s ) / t p 2 ] ,
P sdly = i = 1 L A sdly ( i ) 2 , P s = i = 1 L A s ( i ) 2 ,
R = P sdly / P s = r 2 P s / P s = exp [ 64 t dly ( t dly + t s ) / t p 2 ] ,
R = exp [ 64 t dly ( t dly + t s ) / ( t r / 10 ) 2 ] = exp [ 6400 f r 2 t dly ( t dly + t s ) ] ,
ξ ^ calib IR N 0 = N 0 N 0 [ 2.1 + 1 η T ( 1 N 0 N 0 ) ] 0.1 ,
N 0 N 0 0.1 + 1 η T 2.1 + 1 η T ,
N 0 N 0 41 61 0.6721 .
N 0 = r 2 N 0 .
P sdly P s = N 0 N 0 41 61 0.6721 ,

Metrics