Abstract

In this paper, ultra-compact, broadband tunable optical bandstop filters (OBSFs) based on a multimode one-dimensional photonic crystal waveguide (PhCW) are proposed and systematically investigated. For the wavelengths in the mini-stopband, the input mode is coupled to a contra-propagating higher order mode by the PhCW and then radiates in a taper, resulting in a stopband at the output with low backreflection at the input. Three-dimensional finite-difference time-domain method is employed to study the OBSFs. The influence of main structural parameters is analyzed, and the design is optimized to reduce the back-reflection and band sidelobes. Using localized heating, we can shift the stopband and tune the bandwidth continuously by cascading the proposed structures. Due to the strong grating strength, our device provides a more compact footprint (40 μm × 1 μm) and much broader stopband (bandwidth of up to 84 nm), compared to the counterparts based on microrings, long-period waveguide gratings, and multimode two-dimensional PhCWs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing

Fujun Sun, Zhongyuan Fu, Chunhong Wang, Zhaoxiang Ding, Chao Wang, and Huiping Tian
Appl. Opt. 56(15) 4363-4368 (2017)

Silicon optical filter with transmission peaks in wide stopband obtained by anti-symmetric photonic crystal with defect in multimode waveguides

Manuel Mendez-Astudillo, Hideaki Okayama, and Hirochika Nakajima
Opt. Express 26(2) 1841-1850 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Yun and K. Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Trans. Microw. Theory Tech. 49(3), 549–553 (2001).
    [Crossref]
  2. Y. Chang and C. H. Chen, “Broadband plasmonic bandstop filters with a single rectangular ring resonator,” IEEE Photonics Technol. Lett. 26(19), 1960–1963 (2014).
    [Crossref]
  3. H. Wang, J. Yang, J. Zhang, J. Huang, W. Wu, D. Chen, and G. Xiao, “Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure,” Opt. Lett. 41(6), 1233–1236 (2016).
    [Crossref] [PubMed]
  4. T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
    [Crossref]
  5. S. Robinson and R. Nakkeeran, “Bandstop filter for photonic integrated circuits using photonic crystal with circular ring resonator,” J. Nanophotonics 5(1), 1934–2608 (2011).
  6. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
    [Crossref] [PubMed]
  7. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31(17), 2571–2573 (2006).
    [Crossref] [PubMed]
  8. Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
    [Crossref]
  9. Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
    [Crossref]
  10. Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
    [Crossref] [PubMed]
  11. N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
    [Crossref]
  12. S. Olivier, H. Benisty, C. Weisbuch, C. Smith, T. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 11(13), 1490–1496 (2003).
    [Crossref] [PubMed]
  13. N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
    [Crossref] [PubMed]
  14. M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
    [Crossref]
  15. K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
    [Crossref]
  16. D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16(8), 5585–5595 (2008).
    [Crossref] [PubMed]
  17. S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
    [Crossref]
  18. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  19. T.-W. Lu and P.-T. Lee, “Photonic crystal nanofishbone nanocavity,” Opt. Lett. 38(16), 3129–3132 (2013).
    [Crossref] [PubMed]
  20. A. R. M. Zain, “One-dimensional photonic crystal photonic wire cavities based on silicon-on-insulator,” PhD Thesis, University of Glasgow (2009).
  21. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).
  22. S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
    [Crossref]
  23. M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86(22), 221111 (2005).
    [Crossref] [PubMed]
  24. M. Tinker and J.-B. Lee, “Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency,” Opt. Express 13(18), 7174–7188 (2005).
    [Crossref] [PubMed]
  25. N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on Silicon-on-Insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28(9), 1380–1391 (2010).
    [Crossref]
  26. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  27. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
    [Crossref]

2016 (1)

2014 (3)

Y. Chang and C. H. Chen, “Broadband plasmonic bandstop filters with a single rectangular ring resonator,” IEEE Photonics Technol. Lett. 26(19), 1960–1963 (2014).
[Crossref]

Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
[Crossref] [PubMed]

S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
[Crossref]

2013 (2)

T.-W. Lu and P.-T. Lee, “Photonic crystal nanofishbone nanocavity,” Opt. Lett. 38(16), 3129–3132 (2013).
[Crossref] [PubMed]

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

2012 (1)

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

2011 (6)

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
[Crossref] [PubMed]

S. Robinson and R. Nakkeeran, “Bandstop filter for photonic integrated circuits using photonic crystal with circular ring resonator,” J. Nanophotonics 5(1), 1934–2608 (2011).

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[Crossref] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

2010 (1)

2008 (3)

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
[Crossref]

D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16(8), 5585–5595 (2008).
[Crossref] [PubMed]

2006 (3)

M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31(17), 2571–2573 (2006).
[Crossref] [PubMed]

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

2005 (3)

M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86(22), 221111 (2005).
[Crossref] [PubMed]

M. Tinker and J.-B. Lee, “Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency,” Opt. Express 13(18), 7174–7188 (2005).
[Crossref] [PubMed]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

2003 (1)

2001 (2)

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

T. Y. Yun and K. Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Trans. Microw. Theory Tech. 49(3), 549–553 (2001).
[Crossref]

Almeida, V. R.

Amin, M.

Anand, S.

N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
[Crossref] [PubMed]

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

Arakawa, Y.

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

Azizi, K.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

Barwicz, T.

Benisty, H.

Chang, K.

T. Y. Yun and K. Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Trans. Microw. Theory Tech. 49(3), 549–553 (2001).
[Crossref]

Chang, Y.

Y. Chang and C. H. Chen, “Broadband plasmonic bandstop filters with a single rectangular ring resonator,” IEEE Photonics Technol. Lett. 26(19), 1960–1963 (2014).
[Crossref]

Chen, C. H.

Y. Chang and C. H. Chen, “Broadband plasmonic bandstop filters with a single rectangular ring resonator,” IEEE Photonics Technol. Lett. 26(19), 1960–1963 (2014).
[Crossref]

Chen, D.

Chen, R.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

Chiang, K. S.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Cho, Y. B.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Chow, C. K.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Chrostowski, L.

Chu, T.

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

Cui, K. Y.

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

David, Y.

Dotan, I. E.

Fegadolli, W. S.

Feng, X.

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

Goldring, D.

Gomyo, A.

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

Gu, Z.

Houdré, R.

Huang, J.

Huang, Y. D.

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

Huang, Z. L.

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

Inoue, S.

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Ippen, E. P.

Ishida, S.

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

Jaskorzynska, B.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

Jiang, G.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

Jiang, X.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

Karlsson, A.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

Kärtner, F. X.

Kee, J. S.

Krauss, T.

Kwong, D.-L.

S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
[Crossref]

Lee, J. H.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Lee, J.-B.

Lee, P.-T.

Levy, U.

Li, M. Y.

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

Lin, B.

S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
[Crossref]

Liu, Q.

Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
[Crossref] [PubMed]

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Lo, G.-Q.

S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
[Crossref]

Loncar, M.

Lor, K. P.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Lu, T.-W.

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
[Crossref]

Mendlovic, D.

Nakkeeran, R.

S. Robinson and R. Nakkeeran, “Bandstop filter for photonic integrated circuits using photonic crystal with circular ring resonator,” J. Nanophotonics 5(1), 1934–2608 (2011).

Naureen, S.

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
[Crossref] [PubMed]

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Oksman, M.

Oliveira, J. E. B.

Olivier, S.

Otomo, A.

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Park, M. K.

Popovíc, M. A.

Qiu, M.

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

Quan, Q.

Rakich, P. T.

Robinson, S.

S. Robinson and R. Nakkeeran, “Bandstop filter for photonic integrated circuits using photonic crystal with circular ring resonator,” J. Nanophotonics 5(1), 1934–2608 (2011).

Rouger, N.

Rubin, I.

Shahid, N.

N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
[Crossref] [PubMed]

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

Shin, S. Y.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Smith, C.

Smith, H. I.

Socci, L.

Speijcken, N.

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

Swillo, M.

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
[Crossref] [PubMed]

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

Tinker, M.

Tinker, M. T.

M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86(22), 221111 (2005).
[Crossref] [PubMed]

Tsukernik, A.

Ushida, J.

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

Vafaei, R.

Wang, H.

Wang, M.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Watts, M. R.

Weisbuch, C.

Wu, W.

Xiao, G.

Yamada, H.

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

Yang, B. K.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Yang, J.

H. Wang, J. Yang, J. Zhang, J. Huang, W. Wu, D. Chen, and G. Xiao, “Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure,” Opt. Lett. 41(6), 1233–1236 (2016).
[Crossref] [PubMed]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

Yoon, J. B.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Yun, T. Y.

T. Y. Yun and K. Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Trans. Microw. Theory Tech. 49(3), 549–553 (2001).
[Crossref]

Zhang, J.

Zhang, W.

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

Zhao, Q.

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

Zhou, Q.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

Zhu, S.

S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
[Crossref]

Appl. Phys. Lett. (6)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

N. Shahid, N. Speijcken, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, “Ultrasharp ministop-band edge for subnanometer tuning resolution,” Appl. Phys. Lett. 98(8), 081112 (2011).
[Crossref]

S. Inoue and A. Otomo, “Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 103(17), 171101 (2013).
[Crossref]

K. Y. Cui, X. Feng, Y. D. Huang, Q. Zhao, Z. L. Huang, and W. Zhang, “Broadband switching functionality based on defect mode coupling in W2 photonic crystal waveguide,” Appl. Phys. Lett. 101(15), 151110 (2012).
[Crossref]

M. T. Tinker and J.-B. Lee, “Thermo-optic photonic crystal light modulator,” Appl. Phys. Lett. 86(22), 221111 (2005).
[Crossref] [PubMed]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (6)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photonics Technol. Lett. 20(11), 936–938 (2008).
[Crossref]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 23(1), 6–9 (2011).

S. Zhu, B. Lin, G.-Q. Lo, and D.-L. Kwong, “High-performance thermo-optic switches on compact Cu-dielectric-Si hybrid plasmonic waveguide ring resonators,” IEEE Photonics Technol. Lett. 26(24), 2495–2498 (2014).
[Crossref]

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Y. Chang and C. H. Chen, “Broadband plasmonic bandstop filters with a single rectangular ring resonator,” IEEE Photonics Technol. Lett. 26(19), 1960–1963 (2014).
[Crossref]

T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Tunable optical notch filter realized by shifting the photonic bandgap in a silicon photonic crystal line-defect waveguide,” IEEE Photonics Technol. Lett. 18(24), 2614–2616 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

T. Y. Yun and K. Chang, “Uniplanar one-dimensional photonic-bandgap structures and resonators,” IEEE Trans. Microw. Theory Tech. 49(3), 549–553 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Nanophotonics (1)

S. Robinson and R. Nakkeeran, “Bandstop filter for photonic integrated circuits using photonic crystal with circular ring resonator,” J. Nanophotonics 5(1), 1934–2608 (2011).

Opt. Express (7)

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express 19(13), 12727–12739 (2011).
[Crossref] [PubMed]

Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. Weisbuch, C. Smith, T. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 11(13), 1490–1496 (2003).
[Crossref] [PubMed]

N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express 19(21), 21074–21080 (2011).
[Crossref] [PubMed]

M. Tinker and J.-B. Lee, “Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency,” Opt. Express 13(18), 7174–7188 (2005).
[Crossref] [PubMed]

D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16(8), 5585–5595 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

M. Qiu, K. Azizi, A. Karlsson, M. Swillo, and B. Jaskorzynska, “Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals,” Phys. Rev. B 64(15), 155113 (2001).
[Crossref]

Other (1)

A. R. M. Zain, “One-dimensional photonic crystal photonic wire cavities based on silicon-on-insulator,” PhD Thesis, University of Glasgow (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic configuration of the proposed OBSF. (a) Three-dimensional structure, (b) top view of the silicon core, and (c) the side and top views of a section of 1D PhCW.
Fig. 2
Fig. 2 (a) The photonic band structure of the 1D PhCW (solid lines) and the dispersion curves of the strip waveguide modes (dotted lines); the Ey field distributions of TE0 and TE2 modes in the 1D PhCW (b) and multimode strip waveguide (c).
Fig. 3
Fig. 3 (a) Transmission and reflection spectra of the OBSF, as well as the TE0 and TE2 modes’ fraction of the reflected optical power in the 1D PhCW, inset: the |Ey| field distribution of lossy TE0 Bloch mode in the 1D PhCW. The |Ey| field distributions in the OBSF at the wavelengths of (b) 1.42 μm, (c) 1.58 μm, (d) 1.67 μm, and (e) 1.79 μm.
Fig. 4
Fig. 4 (a) Transmission (solid lines) and reflection (dotted lines) of the OBSFs with different N. (b) The minimum transmission and center backreflection as a function of N.
Fig. 5
Fig. 5 (a) Transmission (solid lines) and reflection (dotted lines) of the OBSFs with different d. (b) The center backreflection and 3-dB bandwidth of the stopband as a function of d.
Fig. 6
Fig. 6 (a) Transmission (solid lines) and reflection (dotted lines) of the OBSFs with different a. (b) The center wavelength λc and 3-dB bandwidth of the stopband as a function of a.
Fig. 7
Fig. 7 (a) The schematic of a 1D PhCW with three tapered holes added. (b) The reflection spectra of the OBSFs with additional holes or not. (c) The zoom-in image of the reflection bands.
Fig. 8
Fig. 8 (a) The schematic of a Gaussian apodized 1D PhCW and the general distribution of hole diameter. The transmission (b) and reflection (c) spectra of the apodized OBSFs, insets: the zoom-in images of the transmission and reflection.
Fig. 9
Fig. 9 (a) The tuned OBSF structure with highly localized heating. (b) The transmission and reflection of OBSF at room temperature. (c) The spectral responses of OBSF under different temperature changes.
Fig. 10
Fig. 10 (a) The configuration of series-cascaded two OBSF units and the tuning scheme. (b) The transmission and reflection of cascaded OBSFs with different temperature change, and the short dash lines represent the multiplication of OBSFs’ transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ f = f c a 2 π 4 κ n g 1 + n g 2 ,
d i = d 0 exp [ G ( 2 i N 1 2 N ) 2 ] ,

Metrics