Abstract

Many optical and biogeochemical data sets, crucial for algorithm development and satellite data validation, are collected using underway seawater systems over the course of research cruises. Phytoplankton and particle size distribution (PSD) in the ocean is a key measurement, required in oceanographic research and ocean optics. Using a data set collected in the North Atlantic, spanning different oceanic water types, we outline the differences observed in concurrent samples collected from two different flow-through systems: a permanently plumbed science seawater supply with an impeller pump, and an independent system with shorter, clean tubing runs and a diaphragm pump. We observed an average of 40% decrease in phytoplankton counts, and significant changes to the PSD in 10-45 µm range, when comparing impeller and diaphragm pump systems. Change in PSD seems to be more dependent on the type of the phytoplankton, than the size, with photosynthetic ciliates displaying the largest decreases in cell counts (78%). Comparison of chlorophyll concentrations across the two systems demonstrated lower sensitivity to sampling system type. Observed changes in several measured biogeochemical parameters (associated with phytoplankton size distribution) using the two sampling systems, should be used as a guide towards building best practices when it comes to the deployment of flow-through systems in the field for examining optics and biogeochemistry. Using optical models, we evaluated potential impact of the observed change in measured phytoplankton size spectra onto scattering measurements, resulting in significant differences between modeled optical properties across systems (~40%). Researchers should be aware of the methods used with previously collected data sets, and take into consideration the potentially significant and highly variable ecosystem-dependent biases in designing field studies in the future.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Validation of the particle size distribution obtained with the laser in-situ scattering and transmission (LISST) meter in flow-through mode

Emmanuel Boss, Nils Haëntjens, Toby K. Westberry, Lee Karp-Boss, and Wayne H. Slade
Opt. Express 26(9) 11125-11136 (2018)

Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments

Toby K. Westberry, Giorgio Dall’Olmo, Emmanuel Boss, Michael J. Behrenfeld, and Thierry Moutin
Opt. Express 18(15) 15419-15425 (2010)

Optical assessment of particle size and composition in the Santa Barbara Channel, California

Tihomir Sabinov Kostadinov, David A. Siegel, Stéphane Maritorena, and Nathalie Guillocheau
Appl. Opt. 51(16) 3171-3189 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
    [Crossref]
  2. P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
    [Crossref]
  3. T. Kostadinov, D. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
    [Crossref]
  4. IOCCG, “Phytoplankton Functional Types from Space,” (IOCCG, Dartmouth, Canada, 2014).
  5. S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
    [Crossref]
  6. L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
    [Crossref]
  7. K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
    [Crossref]
  8. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009).
    [Crossref] [PubMed]
  9. W. H. Slade, E. Boss, and C. Russo, “Effects of particle aggregation and disaggregation on their inherent optical properties,” Opt. Express 19(9), 7945–7959 (2011).
    [Crossref] [PubMed]
  10. J. Brower, Bermuda Institute of Ocean Sciences, 17 Biological Station, Ferry Reach, St, George's GE 01, Bermuda (personal communication, 2015).
  11. N. B. Nelson, University of California, Santa Barbara, 6817 Ellison Hall, Santa Barbara CA 93106, USA (personal communication, 2013).
  12. O. E. L. NASA Goddard Space Flight Center, Ocean Biology Processing Group, “MODIS-Aqua Level-3 Mapped Chlorophyll Data Version 2014,” (NASA OB.DAAC, 2016).
  13. M. V. Zubkov, M. A. Sleigh, and P. H. Burkill, “Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean,” Aquat. Microb. Ecol. 21, 13–20 (2000).
    [Crossref]
  14. M. E. Sieracki and N. Poulton, “Phytoplankton_Carbon-NAB08, http://osprey.bcodmo.org/project.cfm?flag=view&id=102&sortby=project ” (Biol. and Chem. Oceanogr. Data Manage. Office, Woods Hole, Mass., 2011).
  15. S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45(3), 569–579 (2000).
    [Crossref]
  16. A. Knap, A. Michaels, A. Close, H. Ducklow, and A. Dickson, Protocols for the Joint Global Ocean Flux Studies (JGOFS) Core Measurements (JGOFS Report Nr. 19), Reprint of the IOC Manuals and Guides No. 29, UNESCO 1994 ed., Manual and Guides 29 (UNESCO, Paris, 1996), p. vi + 170 pp.
  17. R. R. Guillard and M. S. Sieracki, “Counting cells in cultures with the light microscope,” in Algal Culturing Techniques (2005), pp. 239–252.
  18. R. Owen, “Microscale and finescale variations of small plankton in coastal and pelagic environments,” J. Mar. Res. 47(1), 197–240 (1989).
    [Crossref]
  19. E. Boss, W. Slade, and P. Hill, “Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass,” Opt. Express 17(11), 9408–9420 (2009).
    [Crossref] [PubMed]
  20. E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).
  21. S. Menden-Deuer, “Spatial and temporal characteristics of plankton-rich layers in a shallow, temperate fjord,” Mar. Ecol. Prog. Ser. 355, 21–30 (2008).
    [Crossref]
  22. A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
    [Crossref]
  23. T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
    [Crossref]
  24. T. Sime-Ngando, H. J. Hartmann, and C. A. Groliere, “Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods,” Appl. Environ. Microbiol. 56(7), 2234–2242 (1990).
    [PubMed]
  25. D. K. Stoecker, A. Taniguchi, and A. E. Michaels, “Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters,” Mar. Ecol. Prog. Ser. 50, 241–254 (1989).
    [Crossref]
  26. F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
    [Crossref] [PubMed]
  27. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
    [Crossref]
  28. S. W. Jeffrey and G. M. Hallegraeff, “Chlorophyllase distribution in 10 classes of phytoplankton - a problem for chlorophyll analysis,” Mar. Ecol. Prog. Ser. 35, 293–304 (1987).
    [Crossref]
  29. J. C. Goldman and M. R. Dennett, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86(1), 47–58 (1985).
    [Crossref]
  30. I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
    [Crossref]
  31. T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18(15), 15419–15425 (2010).
    [Crossref] [PubMed]
  32. D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
    [Crossref]
  33. R. Eveleth, N. Cassar, S. C. Doney, D. R. Munro, and C. Sweeney, “Biological and physical controls on O2/Ar, Ar and pCO2 variability at the Western Antarctic Peninsula and in the Drake Passage,” Deep Sea Res. Part II Top. Stud. Oceanogr. (posted 13 May 2016).

2014 (1)

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

2013 (3)

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
[Crossref]

A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
[Crossref]

T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
[Crossref]

2012 (1)

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

2011 (1)

2010 (3)

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18(15), 15419–15425 (2010).
[Crossref] [PubMed]

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

T. Kostadinov, D. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

2009 (3)

2008 (1)

S. Menden-Deuer, “Spatial and temporal characteristics of plankton-rich layers in a shallow, temperate fjord,” Mar. Ecol. Prog. Ser. 355, 21–30 (2008).
[Crossref]

2007 (1)

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

2003 (1)

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

2000 (3)

S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
[Crossref]

M. V. Zubkov, M. A. Sleigh, and P. H. Burkill, “Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean,” Aquat. Microb. Ecol. 21, 13–20 (2000).
[Crossref]

S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45(3), 569–579 (2000).
[Crossref]

1998 (1)

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

1990 (1)

T. Sime-Ngando, H. J. Hartmann, and C. A. Groliere, “Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods,” Appl. Environ. Microbiol. 56(7), 2234–2242 (1990).
[PubMed]

1989 (2)

D. K. Stoecker, A. Taniguchi, and A. E. Michaels, “Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters,” Mar. Ecol. Prog. Ser. 50, 241–254 (1989).
[Crossref]

R. Owen, “Microscale and finescale variations of small plankton in coastal and pelagic environments,” J. Mar. Res. 47(1), 197–240 (1989).
[Crossref]

1987 (1)

S. W. Jeffrey and G. M. Hallegraeff, “Chlorophyllase distribution in 10 classes of phytoplankton - a problem for chlorophyll analysis,” Mar. Ecol. Prog. Ser. 35, 293–304 (1987).
[Crossref]

1985 (1)

J. C. Goldman and M. R. Dennett, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86(1), 47–58 (1985).
[Crossref]

Andrews, J.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Bailey, S.

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Ball, L.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Behrenfeld, M.

Behrenfeld, M. J.

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18(15), 15419–15425 (2010).
[Crossref] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[Crossref]

Belarbi, E. H.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Belastock, R.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Bendtsen, J.

E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).

Benitez-Nelson, C.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Boss, E.

Boyd, P. W.

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

Boyle, E. A.

S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
[Crossref]

Briggs, N. T.

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

Buesseler, K.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Buesseler, K. O.

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

Burkill, P. H.

M. V. Zubkov, M. A. Sleigh, and P. H. Burkill, “Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean,” Aquat. Microb. Ecol. 21, 13–20 (2000).
[Crossref]

Camacho, F. G.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Caron, D. A.

A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
[Crossref]

Cermeño, P.

T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
[Crossref]

Cetinic, I.

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).

Chai, F.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Chao, Y.

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Chisti, Y.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

D’Asaro, E. A.

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

Dall’Olmo, G.

Dennett, M. R.

J. C. Goldman and M. R. Dennett, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86(1), 47–58 (1985).
[Crossref]

Doney, S. C.

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

Dornelas, M.

T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
[Crossref]

Fargion, G.

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Feldman, G.

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

García, M. C.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Goldman, J. C.

J. C. Goldman and M. R. Dennett, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86(1), 47–58 (1985).
[Crossref]

Grima, E. M.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Groliere, C. A.

T. Sime-Ngando, H. J. Hartmann, and C. A. Groliere, “Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods,” Appl. Environ. Microbiol. 56(7), 2234–2242 (1990).
[PubMed]

Hallegraeff, G. M.

S. W. Jeffrey and G. M. Hallegraeff, “Chlorophyllase distribution in 10 classes of phytoplankton - a problem for chlorophyll analysis,” Mar. Ecol. Prog. Ser. 35, 293–304 (1987).
[Crossref]

Hamme, R. C.

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

Hartmann, H. J.

T. Sime-Ngando, H. J. Hartmann, and C. A. Groliere, “Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods,” Appl. Environ. Microbiol. 56(7), 2234–2242 (1990).
[PubMed]

Hill, P.

Jeffrey, S. W.

S. W. Jeffrey and G. M. Hallegraeff, “Chlorophyllase distribution in 10 classes of phytoplankton - a problem for chlorophyll analysis,” Mar. Ecol. Prog. Ser. 35, 293–304 (1987).
[Crossref]

Juranek, L. W.

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

Kaiser, J.

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

Kallin, E.

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

Kim, D. Y.

A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
[Crossref]

Knobelspiesse, K.

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Kostadinov, T.

T. Kostadinov, D. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

Lee, C. M.

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

Leeuw, T.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
[Crossref]

Lessard, E. J.

S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45(3), 569–579 (2000).
[Crossref]

Lie, A. A.

A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
[Crossref]

Marañón, E.

T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
[Crossref]

Maritorena, S.

T. Kostadinov, D. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

McClain, C.

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Measures, C. I.

S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
[Crossref]

Menden-Deuer, S.

S. Menden-Deuer, “Spatial and temporal characteristics of plankton-rich layers in a shallow, temperate fjord,” Mar. Ecol. Prog. Ser. 355, 21–30 (2008).
[Crossref]

S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45(3), 569–579 (2000).
[Crossref]

Michaels, A. E.

D. K. Stoecker, A. Taniguchi, and A. E. Michaels, “Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters,” Mar. Ecol. Prog. Ser. 50, 241–254 (1989).
[Crossref]

Mirón, A. S.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Mousing, E. A.

E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).

Moutin, T.

Ouhssain, M.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
[Crossref]

Owen, R.

R. Owen, “Microscale and finescale variations of small plankton in coastal and pelagic environments,” J. Mar. Res. 47(1), 197–240 (1989).
[Crossref]

Perry, M. J.

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).

Pietras, C.

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Proctor, C. W.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
[Crossref]

Quay, P. D.

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

Richardson, K.

E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).

Rodríguez, J. G.

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Rodríguez-Ramos, T.

T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
[Crossref]

Russo, C.

Sailley, S. F.

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

Schnetzer, A.

A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
[Crossref]

Siegel, D.

T. Kostadinov, D. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

Siegel, D. A.

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

Sime-Ngando, T.

T. Sime-Ngando, H. J. Hartmann, and C. A. Groliere, “Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods,” Appl. Environ. Microbiol. 56(7), 2234–2242 (1990).
[PubMed]

Slade, W.

Slade, W. H.

Sleigh, M. A.

M. V. Zubkov, M. A. Sleigh, and P. H. Burkill, “Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean,” Aquat. Microb. Ecol. 21, 13–20 (2000).
[Crossref]

Stoecker, D. K.

D. K. Stoecker, A. Taniguchi, and A. E. Michaels, “Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters,” Mar. Ecol. Prog. Ser. 50, 241–254 (1989).
[Crossref]

Taniguchi, A.

D. K. Stoecker, A. Taniguchi, and A. E. Michaels, “Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters,” Mar. Ecol. Prog. Ser. 50, 241–254 (1989).
[Crossref]

Vink, S.

S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
[Crossref]

Wanninkhof, R.

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

Werdell, P. J.

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
[Crossref]

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Westberry, T. K.

T. K. Westberry, G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. Moutin, “Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments,” Opt. Express 18(15), 15419–15425 (2010).
[Crossref] [PubMed]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[Crossref]

Yuan, J.

S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
[Crossref]

Zubkov, M. V.

M. V. Zubkov, M. A. Sleigh, and P. H. Burkill, “Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean,” Aquat. Microb. Ecol. 21, 13–20 (2000).
[Crossref]

Appl. Environ. Microbiol. (1)

T. Sime-Ngando, H. J. Hartmann, and C. A. Groliere, “Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods,” Appl. Environ. Microbiol. 56(7), 2234–2242 (1990).
[PubMed]

Aquat. Microb. Ecol. (2)

A. A. Lie, D. Y. Kim, A. Schnetzer, and D. A. Caron, “Small-scale temporal and spatial variations in protistan community composition at the San Pedro Ocean Time-series station off the coast of southern California,” Aquat. Microb. Ecol. 70(2), 93–110 (2013).
[Crossref]

M. V. Zubkov, M. A. Sleigh, and P. H. Burkill, “Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean,” Aquat. Microb. Ecol. 21, 13–20 (2000).
[Crossref]

Biogeosciences (2)

T. Kostadinov, D. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences 7(10), 3239–3257 (2010).
[Crossref]

G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009).
[Crossref]

Biotechnol. Adv. (1)

F. G. Camacho, J. G. Rodríguez, A. S. Mirón, M. C. García, E. H. Belarbi, Y. Chisti, and E. M. Grima, “Biotechnological significance of toxic marine dinoflagellates,” Biotechnol. Adv. 25(2), 176–194 (2007).
[Crossref] [PubMed]

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

S. Vink, E. A. Boyle, C. I. Measures, and J. Yuan, “Automated high resolution determination of the trace elements iron and aluminium in the surface ocean using a towed Fish coupled to flow injection analysis,” Deep Sea Res. Part I Oceanogr. Res. Pap. 47(6), 1141–1156 (2000).
[Crossref]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

K. Buesseler, L. Ball, J. Andrews, C. Benitez-Nelson, R. Belastock, F. Chai, and Y. Chao, “Upper ocean export of particulate organic carbon in the Arabian Sea derived from thorium-234,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(10-11), 2461–2487 (1998).
[Crossref]

Eos (Wash. D.C.) (1)

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos (Wash. D.C.) 84(38), 377 (2003).
[Crossref]

Geophys. Res. Lett. (1)

L. W. Juranek, R. C. Hamme, J. Kaiser, R. Wanninkhof, and P. D. Quay, “Evidence of O2 consumption in underway seawater lines: Implications for air-sea O2 and CO2 fluxes,” Geophys. Res. Lett. 37(1), 040423 (2010).
[Crossref]

Global Biogeochem. Cycles (1)

D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd, “Global assessment of ocean carbon export by combining satellite observations and food‐web models,” Global Biogeochem. Cycles 28(3), 181–196 (2014).
[Crossref]

J. Exp. Mar. Biol. Ecol. (1)

J. C. Goldman and M. R. Dennett, “Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsing,” J. Exp. Mar. Biol. Ecol. 86(1), 47–58 (1985).
[Crossref]

J. Geophys. Res. (1)

I. Cetinić, M. J. Perry, N. T. Briggs, E. Kallin, E. A. D’Asaro, and C. M. Lee, “Particulate organic carbon and inherent optical properties during 2008 North Atlantic Bloom Experiment,” J. Geophys. Res. 117(C6), C06028 (2012).
[Crossref]

J. Mar. Res. (1)

R. Owen, “Microscale and finescale variations of small plankton in coastal and pelagic environments,” J. Mar. Res. 47(1), 197–240 (1989).
[Crossref]

J. Plankton Res. (1)

T. Rodríguez-Ramos, M. Dornelas, E. Marañón, and P. Cermeño, “Conventional sampling methods severely underestimate phytoplankton species richness,” J. Plankton Res. 36(2), 334–343 (2013).
[Crossref]

Limnol. Oceanogr. (1)

S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45(3), 569–579 (2000).
[Crossref]

Mar. Ecol. Prog. Ser. (3)

D. K. Stoecker, A. Taniguchi, and A. E. Michaels, “Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters,” Mar. Ecol. Prog. Ser. 50, 241–254 (1989).
[Crossref]

S. Menden-Deuer, “Spatial and temporal characteristics of plankton-rich layers in a shallow, temperate fjord,” Mar. Ecol. Prog. Ser. 355, 21–30 (2008).
[Crossref]

S. W. Jeffrey and G. M. Hallegraeff, “Chlorophyllase distribution in 10 classes of phytoplankton - a problem for chlorophyll analysis,” Mar. Ecol. Prog. Ser. 35, 293–304 (1987).
[Crossref]

Methods Oceanogr. (1)

P. J. Werdell, C. W. Proctor, E. Boss, T. Leeuw, and M. Ouhssain, “Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation,” Methods Oceanogr. 7, 40–51 (2013).
[Crossref]

Opt. Express (4)

Other (9)

R. Eveleth, N. Cassar, S. C. Doney, D. R. Munro, and C. Sweeney, “Biological and physical controls on O2/Ar, Ar and pCO2 variability at the Western Antarctic Peninsula and in the Drake Passage,” Deep Sea Res. Part II Top. Stud. Oceanogr. (posted 13 May 2016).

IOCCG, “Phytoplankton Functional Types from Space,” (IOCCG, Dartmouth, Canada, 2014).

J. Brower, Bermuda Institute of Ocean Sciences, 17 Biological Station, Ferry Reach, St, George's GE 01, Bermuda (personal communication, 2015).

N. B. Nelson, University of California, Santa Barbara, 6817 Ellison Hall, Santa Barbara CA 93106, USA (personal communication, 2013).

O. E. L. NASA Goddard Space Flight Center, Ocean Biology Processing Group, “MODIS-Aqua Level-3 Mapped Chlorophyll Data Version 2014,” (NASA OB.DAAC, 2016).

A. Knap, A. Michaels, A. Close, H. Ducklow, and A. Dickson, Protocols for the Joint Global Ocean Flux Studies (JGOFS) Core Measurements (JGOFS Report Nr. 19), Reprint of the IOC Manuals and Guides No. 29, UNESCO 1994 ed., Manual and Guides 29 (UNESCO, Paris, 1996), p. vi + 170 pp.

R. R. Guillard and M. S. Sieracki, “Counting cells in cultures with the light microscope,” in Algal Culturing Techniques (2005), pp. 239–252.

E. A. Mousing, K. Richardson, J. Bendtsen, I. Cetinic, and M. J. Perry, “Evidence of small scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean,” J. Ecol. (posted 1 August 2016).

M. E. Sieracki and N. Poulton, “Phytoplankton_Carbon-NAB08, http://osprey.bcodmo.org/project.cfm?flag=view&id=102&sortby=project ” (Biol. and Chem. Oceanogr. Data Manage. Office, Woods Hole, Mass., 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A) Station locations (marked with x) superimposed on a MODIS Chlorophyll 8-day composite, 20-28, during the flow-through experiment (color scale represents Chlorophyll a (μg L−1)). Continuous temperature and salinity, depicted on panel B, with station time points marked with gray lines. Each station is located within a different water mass, correlating with the observed changes in the nano/micro phytoplankton community. C) Homogeneity in the mixed layer on ST4 is visible in particulate attenuation (purple) and density (gray). Mixed layer depth (MLD) is marked with blue dashed line.
Fig. 2
Fig. 2 Comparison of phytoplankton cell concentrations for samples obtained from the two different flow-through systems (DPS and IPS) at all stations (ST1-ST4). At the first station, samples were collected directly from the ocean’s surface and used for comparison with other two systems. Note: not all five phytoplankton groups were present in all the samples, as demonstrated by different coloring of the bar graphs (blue – diatoms, red – dinoflagellates, yellow – SC - “small cells”, gray – cili = ‘ciliates’ and –green – OT – ‘other’). Error bars are depicting: black – natural variability of the population, purple – method error (see section 2.2 and Table 1).
Fig. 3
Fig. 3 First 4 panels depict frequency of particle size, binned to 5 μm size bins (5-100 μm), for samples taken from two different flow-through systems (DPS and IPS) for all stations (ST1-ST4). As with previous figures, the surface sample was collected on ST1 for comparison purposes. Gray dashed line depicts “rare species threshold”.
Fig. 4
Fig. 4 A) Biomass as determined for nano-/micro-phytoplankton from biovolume measurements using imaging flow cytometry; B) Corresponding bulk chlorophyll concentrations obtained at each station along the transect, error bars are standard deviation (when triplicates were collected). Error bars on panel A are depicting: black – natural variability of the population, purple – method error (see section 2.2 and Table 1, Fig. 2).
Fig. 5
Fig. 5 Optical properties calculated from the PSD data (5-60 µm), as proposed by Mie theory. Panel A depicts phytoplankton attenuation, and panel B backscattering coefficients. Error bars represent standard deviation of the calculated optical properties, for different indices of refraction. Color coding of the bars is same as in Figs. 3 and 4.

Tables (1)

Tables Icon

Table 1 Statistical Significance of the Trends Depicted in Fig. 1, Evaluated for Different Sources of Uncertaintiesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c phyto = D 1 D 2 C ¯ ext ( D i )N( D i ) [ m 1 ],
b b,phyto = D 1 D 2 B ¯ p ( D i ) C ¯ sca ( D i )N( D i ) [ m 1 ],

Metrics