Abstract

Division of focal plane (DoFP) polarimeters operate by integrating micro-polarizer elements with a focal plane. These polarization imaging sensors reduce spatial resolution output and each pixel has a varying instantaneous field of view (IFoV). These drawbacks can be mitigated by applying proper interpolation methods. In this paper, we present a new interpolation method for DoFP polarimeters by using intensity correlation. We employ the correlation of intensity measurements in different orientations to detect edges and then implement interpolation along edges. The performance of the proposed method is compared with several previous methods by using root mean square error (RMSE) comparison and visual comparison. Experimental results showed that our proposed method can achieve better visual effects and a lower RMSE than other methods.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gradient-based interpolation method for division-of-focal-plane polarimeters

Shengkui Gao and Viktor Gruev
Opt. Express 21(1) 1137-1151 (2013)

Demosaicking DoFP images using Newton’s polynomial interpolation and polarization difference model

Ning Li, Yongqiang Zhao, Quan Pan, and Seong G. Kong
Opt. Express 27(2) 1376-1391 (2019)

Residual interpolation for division of focal plane polarization image sensors

Ashfaq Ahmed, Xiaojin Zhao, Viktor Gruev, Junchao Zhang, and Amine Bermak
Opt. Express 25(9) 10651-10662 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
    [Crossref]
  2. M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
    [Crossref]
  3. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
    [Crossref]
  4. F. A. Sadjadi and C. S. Chun, “Passive Polarimetric IR Target Classification,” IEEE Trans. Aerospace Electron. Syst. 37, 740–751 (2001).
    [Crossref]
  5. BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
    [Crossref]
  6. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).
  7. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002).
    [Crossref] [PubMed]
  8. C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
    [Crossref]
  9. J. S. Tyo, “Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error,” Opt. Lett. 31(20), 2984–2986 (2006).
    [Crossref] [PubMed]
  10. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18, 25815–25824 (2010).
    [Crossref] [PubMed]
  11. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469, August2006.
    [Crossref] [PubMed]
  12. R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
  13. B. Ratliff, C. LaCasse, and S. Tyo, “Interpolation strategies for reducing IFoV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009).
    [Crossref] [PubMed]
  14. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
    [Crossref]
  15. S. Gao and V. Gruev, “Image interpolation methods evaluation for division of focal plane polarimeters,” Proc. SPIE8012, 80120N (2011).
    [Crossref]
  16. S. Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21, 1137–1151(2013).
    [Crossref] [PubMed]
  17. G Elad, JP Cunningham, N Arye, and V. Gruev, “Image interpolation and denoising for division of focal plane sensors using Gaussian processes,” Opt. Express 22(12), 15277–15291 (2014).
    [Crossref]
  18. C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).
  19. B. M. Ratliff, T. J. Scott, J. K. Boger, W. T. Black, D. L. Bowers, and MP Fetrow, “Dead pixel replacement in LWIR microgrid polarimeters,” Opt. Express 15(12), 7596–7609 (2007).
    [Crossref] [PubMed]
  20. V. Gruev, J. Van der Spiegel, and N. Engheta, “Advances in integrated polarization image sensors,” in Proceedings of IEEE Conference on Life Science Systems and Applications Workshop (IEEE, 2009), pp. 62–65.

2014 (2)

C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).

G Elad, JP Cunningham, N Arye, and V. Gruev, “Image interpolation and denoising for division of focal plane sensors using Gaussian processes,” Opt. Express 22(12), 15277–15291 (2014).
[Crossref]

2013 (2)

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

S. Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21, 1137–1151(2013).
[Crossref] [PubMed]

2011 (3)

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[Crossref]

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref]

M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

2006 (2)

2005 (1)

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

2002 (1)

2001 (1)

F. A. Sadjadi and C. S. Chun, “Passive Polarimetric IR Target Classification,” IEEE Trans. Aerospace Electron. Syst. 37, 740–751 (2001).
[Crossref]

1989 (1)

R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).

1852 (1)

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).

Arye, N

Bernstein, GH

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

Black, W. T.

Boger, J. K.

Bowers, D. L.

Chenault, D. B.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469, August2006.
[Crossref] [PubMed]

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

Chipman, R. A.

R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).

Chun, C. S.

F. A. Sadjadi and C. S. Chun, “Passive Polarimetric IR Target Classification,” IEEE Trans. Aerospace Electron. Syst. 37, 740–751 (2001).
[Crossref]

Craighead, H. G.

Creusere, C.

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref]

Cunningham, JP

Elad, G

Engheta, N.

V. Gruev, J. Van der Spiegel, and N. Engheta, “Advances in integrated polarization image sensors,” in Proceedings of IEEE Conference on Life Science Systems and Applications Workshop (IEEE, 2009), pp. 62–65.

Farlow, C. A.

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

Fay, PJ

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

Fetrow, MP

Gao, S.

Goldstein, D. L.

Gruev, V.

Gulley, M. G.

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

Harnett, C. K.

J. Scott, T.

Jones, M. W.

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

Karpel, N.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

Krishna, T.

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref]

LaCasse, C.

Orlov, AO

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

Perkins, R.

Persons, C. M.

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

Porod, W

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

Ratliff, B.

Ratliff, B. M.

Sadjadi, F. A.

F. A. Sadjadi and C. S. Chun, “Passive Polarimetric IR Target Classification,” IEEE Trans. Aerospace Electron. Syst. 37, 740–751 (2001).
[Crossref]

San SegundoBello, D.

M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Sarkar, M.

M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Schechner, Y. Y.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

Shaw, J. A.

Shi, Z. L.

C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).

Spradley, K. D.

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

Stokes, G. G.

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).

Theuwissen, A.

M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Tiwari, BN

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

Tyo, J. S.

Tyo, S.

Van der Spiegel, J.

V. Gruev, J. Van der Spiegel, and N. Engheta, “Advances in integrated polarization image sensors,” in Proceedings of IEEE Conference on Life Science Systems and Applications Workshop (IEEE, 2009), pp. 62–65.

van Hoof, C.

M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

Voelz, D.

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref]

Wei, W.

C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).

Xia, R. B.

C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).

Xiao, C. M.

C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).

Appl. Opt. (2)

IEEE J. Oceanic Eng. (1)

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30(3), 570–587 (2005).
[Crossref]

IEEE Sens. J. (1)

M. Sarkar, D. San SegundoBello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11(8), 1692–1703 (2011).
[Crossref]

IEEE Trans. Aerospace Electron. Syst. (1)

F. A. Sadjadi and C. S. Chun, “Passive Polarimetric IR Target Classification,” IEEE Trans. Aerospace Electron. Syst. 37, 740–751 (2001).
[Crossref]

IEEE Trans. Image Process. (1)

T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20(1), 288–292 (2011).
[Crossref]

IEEE Trans. Nanotechnol. (1)

BN Tiwari, PJ Fay, GH Bernstein, AO Orlov, and W Porod, “Effect of Read-Out Interconnects on the Polarization Characteristics of Nanoantennas for the Long-Wave Infrared Regime,” IEEE Trans. Nanotechnol. 12, 270–275 (2013).
[Crossref]

Information & Control (1)

C. M. Xiao, Z. L. Shi, R. B. Xia, and W. Wei, “Edge-Detection Algorithm Based on Visual Saliency,” Information & Control 43(1), 9–13 (2014).

Opt. Eng. (1)

R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).

Opt. Express (6)

Opt. Lett. (1)

Trans. Cambridge Philos. Soc. (1)

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).

Other (3)

C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and applications,” Proc. SPIE4481, 118 (2002).
[Crossref]

S. Gao and V. Gruev, “Image interpolation methods evaluation for division of focal plane polarimeters,” Proc. SPIE8012, 80120N (2011).
[Crossref]

V. Gruev, J. Van der Spiegel, and N. Engheta, “Advances in integrated polarization image sensors,” in Proceedings of IEEE Conference on Life Science Systems and Applications Workshop (IEEE, 2009), pp. 62–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layout of DoFP polarization imaging sensors.
Fig. 2
Fig. 2 Several different cases for correlation error calculation.
Fig. 3
Fig. 3 Experimental apparatus.
Fig. 4
Fig. 4 Comparison of different interpolation methods. (a) True polarization, (b) Bilinear, (c) Bicubic, (d) Bicubic Spline, (e) Gradient-based, (f) Our method.
Fig. 5
Fig. 5 RMSE results for different illuminations. (a) Intensity, (b) DoLP.
Fig. 6
Fig. 6 Interpolated comparison of DoFP polarization image.

Tables (2)

Tables Icon

Table 1 The interpolation algorithm.

Tables Icon

Table 2 RMSE performance comparisons for the test images.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I θ = ( 1 , 0 , 0 , 0 ) M l p S i n .
M l p = 1 2 [ 1 cos 2 θ sin 2 θ 0 cos 2 θ cos 2 2 θ sin 2 θ cos 2 θ 0 sin 2 θ sin 2 θ cos 2 θ sin 2 2 θ 0 0 0 0 0 ] .
( I 0 ° I 45 ° I 90 ° I 135 ° ) = 1 2 [ 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 ] ( S 0 S 1 S 2 0 ) .
( I ^ 0 ° I ^ 45 ° I ^ 90 ° I ^ 135 ° ) = [ 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ] ( I ¯ 0 ° I ¯ 45 ° I ¯ 90 ° I ¯ 135 ° ) .
Δ I ( i , j ) = | I ( i , j ) I ^ ( i , j ) | = | ω ( i , j ) I ( i , j ) | .
ω = [ 1 / 4 1 / 2 1 / 4 1 / 2 1 1 / 2 1 / 4 1 / 2 1 / 4 ] .
{ Δ I h ( i , j ) = | ω H , 1 ( i , j ) I ( i , j ) ω H , 2 ( i , j ) I ( i , j ) | Δ I v ( i , j ) = | ω V , 1 ( i , j ) I ( i , j ) ω V , 2 ( i , j ) I ( i , j ) | .
ω H , 1 = [ 1 / 2 1 / 2 1 / 2 1 / 2 1 1 / 2 0 1 / 2 0 ] ω H , 2 = [ 0 1 / 2 0 1 / 2 1 1 / 2 1 / 2 1 / 2 1 / 2 ] .
{ Δ D 45 ° = k { 3 , 1 , 1 } | I ( i + k , j k ) I ( i + k 2 , j k + 2 ) | + A Δ D 135 ° = k { 3 , 1 , 1 } | I ( i + k , j + k ) I ( i + k 2 , j + k 2 ) | + B .
R M S E = 1 M N i = 1 M j = 1 N ( I t r u e ( i , j ) I i n t e r p o l a t i o n ( i , j ) ) 2 .

Metrics