Abstract

In this work, we present a miniaturize power limiter, a device with size smaller than that required by the working frequency, made of coupled self-complementary electric inductive-capacitive (CELC) resonator and original electric inductive-capacitive (ELC) structure. We also make use of Babinet principle to ensure both CELC and ELC are resonating at the same frequency. The CELC structure is loaded with a Schottky diode to achieve the effect of a nonlinear power limiter. The constructive interference of CELC and ELC structure produces a new Fano-type resonance peak at a lower frequency. The Fano peak is sharp and able to concentrate electric field at a region between the inner and outer metallic patch of the metastructure, hence enhancing the nonlinear properties of the loaded diode. The Fano peak enhances the maximum isolation of the power limiter due to the local field enhancement at where the diode is loaded. Numerical simulation and experiment are conducted in the S-band frequency to verify the power limiting effect of the device designed and to discuss the formation of Fano peak. The power limiter designed has a maximum isolation of 8.4 dB and a 3-dB isolation bandwidth of 6%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber

Yongjun Huang, Guangjun Wen, Weiren Zhu, Jian Li, Li-Ming Si, and Malin Premaratne
Opt. Express 22(13) 16408-16417 (2014)

Frequency-reconfigurable metamaterial absorber/reflector with eight operating modes

Rongcao Yang, Jianping Xu, Jiayun Wang, Runbo Ma, and Wenmei Zhang
Opt. Express 27(12) 16550-16559 (2019)

Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures

Mingzhi Lu, Wenzao Li, and Elliott R. Brown
Opt. Lett. 36(7) 1071-1073 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
    [Crossref]
  2. W. W. Salisbury, “Absorbent body for electromagnetic waves.” U.S. Patent 2599944 (1952).
  3. O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
    [Crossref]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  6. D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wireless Prop. Lett. 10, 1516–1519 (2011).
    [Crossref]
  7. H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
    [Crossref] [PubMed]
  8. S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
    [Crossref]
  9. D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” Microwaves, Antennas and Propagation, IEEE Proceedings 147(6), 501–507 (2000).
    [Crossref]
  10. J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
    [Crossref]
  11. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [Crossref]
  12. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  13. T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
    [Crossref]
  14. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
    [Crossref]
  15. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  16. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  17. T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
    [Crossref]
  18. S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, “Understanding the Fano resonance through toy models,” Am. J. Phys. 72(12), 1501–1507 (2004).
    [Crossref]
  19. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  20. S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33(4), 863–871 (2012).
    [Crossref]
  21. S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
    [Crossref]
  22. T. Cao and L. Zhang, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21(16), 19228–19239 (2013).
    [Crossref] [PubMed]
  23. R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref] [PubMed]
  24. Q. Fu, F. Zhang, Y. Fan, X. He, T. Qiao, and B. Kong, “Electrically tunable Fano-type resonance of an asymmetric metal wire pair,” Opt. Express 24(11), 11708–11715 (2016).
    [Crossref] [PubMed]
  25. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]

2016 (2)

S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, X. He, T. Qiao, and B. Kong, “Electrically tunable Fano-type resonance of an asymmetric metal wire pair,” Opt. Express 24(11), 11708–11715 (2016).
[Crossref] [PubMed]

2015 (2)

S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
[Crossref]

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

2013 (3)

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

T. Cao and L. Zhang, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21(16), 19228–19239 (2013).
[Crossref] [PubMed]

2012 (1)

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33(4), 863–871 (2012).
[Crossref]

2011 (4)

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
[Crossref]

D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wireless Prop. Lett. 10, 1516–1519 (2011).
[Crossref]

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2009 (1)

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

2005 (1)

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

2004 (2)

S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, “Understanding the Fano resonance through toy models,” Am. J. Phys. 72(12), 1501–1507 (2004).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Al-Naib, I. A.

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Averitt, R. D.

Baena, J. D.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bandopadhyay, S.

S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, “Understanding the Fano resonance through toy models,” Am. J. Phys. 72(12), 1501–1507 (2004).
[Crossref]

Barrett, J. P.

A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
[Crossref]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bingham, C. M.

Bonache, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Cao, T.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cong, L.

S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Costa, F.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

Cummer, S. A.

A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
[Crossref]

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Dutta-Roy, B.

S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, “Understanding the Fano resonance through toy models,” Am. J. Phys. 72(12), 1501–1507 (2004).
[Crossref]

Falcone, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Fan, Y.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Fu, Q.

Garcia, J. G.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gil, I.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Gollub, J.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, S.

S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Hand, T. H.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Hawkes, A. M.

A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
[Crossref]

He, X.

Katko, A. R.

A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Kim, S.

S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Kitano, M.

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Koch, M.

Kong, B.

Landy, N. I.

Laso, M. A. G.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lopetegi, F. F. T.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Losada, V.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luukkonen, O.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mani, H. S.

S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, “Understanding the Fano resonance through toy models,” Am. J. Phys. 72(12), 1501–1507 (2004).
[Crossref]

Marques, R.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martin, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Medina, F.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Mohapatra, A.

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33(4), 863–871 (2012).
[Crossref]

Monorchio, A.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

Nakanishi, T.

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ortiz, J. D.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

Padilla, W. J.

Portillo, M. F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Qiao, T.

Quijano, J. L.

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

Roy, A.

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33(4), 863–871 (2012).
[Crossref]

Rushton, J. J.

S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Sajuyigbe, S.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Satpathy, S.

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33(4), 863–871 (2012).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Sievenpiper, D. F.

S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wireless Prop. Lett. 10, 1516–1519 (2011).
[Crossref]

Sillero, R. M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Simovski, C. R.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

Singh, R.

S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
[Crossref]

R. Singh, I. A. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Sorolla, M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Tao, H.

Tretyakov, S. A.

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

Wakatsuchi, H.

S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yang, H.

S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Zhang, F.

Zhang, L.

Zhang, W.

Zhang, X.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Am. J. Phys. (1)

S. Bandopadhyay, B. Dutta-Roy, and H. S. Mani, “Understanding the Fano resonance through toy models,” Am. J. Phys. 72(12), 1501–1507 (2004).
[Crossref]

Appl. Phys. Lett. (3)

S. Kim, H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, “Switchable nonlinear metasurfaces for absorbing high power surface waves,” Appl. Phys. Lett. 108(4), 041903 (2016).
[Crossref]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Eur. J. Phys. (1)

S. Satpathy, A. Roy, and A. Mohapatra, “Fano interference in classical oscillators,” Eur. J. Phys. 33(4), 863–871 (2012).
[Crossref]

IEEE Antennas Wireless Prop. Lett. (3)

D. F. Sievenpiper, “Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents,” IEEE Antennas Wireless Prop. Lett. 10, 1516–1519 (2011).
[Crossref]

A. R. Katko, A. M. Hawkes, J. P. Barrett, and S. A. Cummer, “Rf limiter metamaterial using pin diodes,” IEEE Antennas Wireless Prop. Lett. 10, 1571–1574 (2011).
[Crossref]

O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, “A thin electromagnetic absorber for wide incidence angles and both polarizations,” IEEE Antennas Wireless Prop. Lett. 57(10), 3119–3125 (2009).
[Crossref]

IEEE Microwave Wireless Components Lett. (1)

J. D. Ortiz, J. D. Baena, V. Losada, F. Medina, R. Marques, and J. L. Quijano, “Self-complementary metasurface for designing narrow band pass/stop filters,” IEEE Microwave Wireless Components Lett. 23(6), 291–293 (2013).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, F. F. T. Lopetegi, M. A. G. Laso, J. G. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Han, R. Singh, L. Cong, and H. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Nat. Mater. (2)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. Appl. (1)

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Appl. 4(2), 024013 (2015).
[Crossref]

Phys. Rev. Lett. (3)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Waveform-dependent absorbing metasurfaces,” Phys. Rev. Lett. 111(24), 245501 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Other (2)

D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” Microwaves, Antennas and Propagation, IEEE Proceedings 147(6), 501–507 (2000).
[Crossref]

W. W. Salisbury, “Absorbent body for electromagnetic waves.” U.S. Patent 2599944 (1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of (a) front CELC with a lumped element (blue arrow) connected across inner metallic patch to outer metallic patch, (b) back ELC and (c) overall view of miniature power limiter with FR4 substrate. The dimensions are as follow: d = 4 mm, g = 0.5 mm, a = 17 mm, w = 1.1 mm and t = 1.524 mm. (d) equivalent circuit for miniature power limiter (diode not loaded)
Fig. 2
Fig. 2 Simulated S21 values for (a) CELC loaded with lumped element and (b) CELC and ELC structure on opposite side of FR4 substrate, loaded with lumped element for various value of resistance to represent diode at various power states.
Fig. 3
Fig. 3 Plot of shift in resonant frequency from original CELC loaded with lumped element to miniaturize power limiter with thickness of dielectric.
Fig. 4
Fig. 4 Magnitude of simulated S21 values for (a) ELC and CELC alone on separate FR4 substrate, (b) CELC and ELC patterned on opposite side of the same FR4 substrate (c) phase of S21 in degrees for the case of substrate with only ELC or CELC and substrate with CELC on one side and ELC on the other side.
Fig. 5
Fig. 5 The surface current distribution of (a) front CELC and (b) back ELC surface at Fano-frequency and contour plot of y-component of local electric field Ey (direction of E-field indicated by arrows) at frequency (c) 3.68 GHz and (d) 5.9 GHz for CELC and ELC patterned on opposite of same FR4 substrate, with no lumped element loaded.
Fig. 6
Fig. 6 (a) Picture of the fabricated sample (front) with diode soldered, (b)schematic diagram and (c) actual set-up for experiment. The insert in (c) shows how the sample is placed inside the waveguide.
Fig. 7
Fig. 7 (a) Experimental S21 measurement and (b) plot of output power against input power of miniature power limiter.
Fig. 8
Fig. 8 S21 values measured in a S-band waveguide for miniature power limiter extended beyond operating frequency. (Insert) simulated results for 8 unit cells.

Metrics