Abstract

We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are on the order of 105. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with a sensitivity of −1.17 nm/K, that is 8 times higher than previous WGM resonator-based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Natural spider silk as a photonics component for humidity sensing

Zhihai Liu, Wei Liu, Chuanzhen Hu, Yu Zhang, Xinghua Yang, Jianzhong Zhang, Jun Yang, and Libo Yuan
Opt. Express 27(15) 21946-21955 (2019)

Replica-molded high-Q polymer microresonators

Andrea L. Martin, Deniz K. Armani, Lan Yang, and Kerry J. Vahala
Opt. Lett. 29(6) 533-535 (2004)

Phone-sized whispering-gallery microresonator sensing system

Xiangyi Xu, Xuefeng Jiang, Guangming Zhao, and Lan Yang
Opt. Express 24(23) 25905-25910 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref] [PubMed]
  3. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  6. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  7. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
    [Crossref] [PubMed]
  8. Y.-F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
    [Crossref] [PubMed]
  9. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  10. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  11. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref] [PubMed]
  12. B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
    [Crossref] [PubMed]
  13. Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
    [Crossref] [PubMed]
  14. H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Materials--A Road to Sustainable High Technology,” Adv. Mater. 24(21), 2824–2837 (2012).
    [Crossref] [PubMed]
  15. S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
    [Crossref]
  16. F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
    [Crossref] [PubMed]
  17. J. MacLeod and F. Rosei, “PHOTONIC CRYSTALS Sustainable sensors from silk,” Nat. Mater. 12(2), 98–100 (2013).
    [Crossref] [PubMed]
  18. D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
    [Crossref] [PubMed]
  19. H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
    [Crossref] [PubMed]
  20. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
    [Crossref]
  21. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
    [Crossref]
  22. C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  23. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
    [Crossref] [PubMed]
  24. I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20(17), 19185–19193 (2012).
    [Crossref] [PubMed]
  25. W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
    [Crossref] [PubMed]
  26. X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” http://arxiv.org/abs/1607.04651 .
  27. D. Saravanan, “Spider Silk - Structure, Properties and Spinning,” J. Text. Apparel, Technol. Manag. 5, 1–20 (2006).
  28. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  29. A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004).
    [Crossref] [PubMed]
  30. A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007).
    [Crossref] [PubMed]
  31. B. Min, L. Yang, and K. Vahala, “Perturbative analytic theory of an ultrahigh-Q toroidal microcavity,” Phys. Rev. A 76(1), 013823 (2007).
    [Crossref]
  32. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  33. M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
    [Crossref] [PubMed]
  34. A. Motta, L. Fambri, and C. Migliaresi, “Regenerated silk fibroin films: Thermal and dynamic mechanical analysis,” Macromol. Chem. Phys. 203(10-11), 1658–1665 (2002).
    [Crossref]
  35. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  36. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [Crossref]

2015 (2)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

2014 (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

2013 (2)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

J. MacLeod and F. Rosei, “PHOTONIC CRYSTALS Sustainable sensors from silk,” Nat. Mater. 12(2), 98–100 (2013).
[Crossref] [PubMed]

2012 (4)

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Materials--A Road to Sustainable High Technology,” Adv. Mater. 24(21), 2824–2837 (2012).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express 20(17), 19185–19193 (2012).
[Crossref] [PubMed]

2011 (4)

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

2010 (4)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

2009 (2)

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

2008 (6)

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

Y.-F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

2007 (2)

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007).
[Crossref] [PubMed]

B. Min, L. Yang, and K. Vahala, “Perturbative analytic theory of an ultrahigh-Q toroidal microcavity,” Phys. Rev. A 76(1), 013823 (2007).
[Crossref]

2006 (1)

D. Saravanan, “Spider Silk - Structure, Properties and Spinning,” J. Text. Apparel, Technol. Manag. 5, 1–20 (2006).

2004 (2)

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (1)

A. Motta, L. Fambri, and C. Migliaresi, “Regenerated silk fibroin films: Thermal and dynamic mechanical analysis,” Macromol. Chem. Phys. 203(10-11), 1658–1665 (2002).
[Crossref]

1996 (1)

Alnis, J.

Amsden, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Amsden, J. J.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Anstie, J. D.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Armani, A. M.

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007).
[Crossref] [PubMed]

Armani, D. K.

A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Baynes, F. N.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Brenckle, M. A.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Bressner, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Campbell, G.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Carmon, T.

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, Q. D.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Cronin-Golomb, M.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

Domachuk, P.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Dong, C.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Dong, C.-H.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Dong, W. F.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Drummy, L. F.

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Fambri, L.

A. Motta, L. Fambri, and C. Migliaresi, “Regenerated silk fibroin films: Thermal and dynamic mechanical analysis,” Macromol. Chem. Phys. 203(10-11), 1658–1665 (2002).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fantini, S.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Fescenko, I.

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Gaddam, V.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Y.-F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

Gaddam, V. R.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Georgakoudi, I.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

Gong, Q.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Gorodetsky, M. L.

Guo, G.-C.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Gupta, M. K.

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Han, Z. F.

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hänsch, T. W.

He, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Hou, Z. S.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Ilchenko, V. S.

Ji, Z.

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Kainerstorfer, J. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Kaplan, D. L.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Materials--A Road to Sustainable High Technology,” Adv. Mater. 24(21), 2824–2837 (2012).
[Crossref] [PubMed]

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Kippenberg, T. J.

Ku, J. F.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Lawrence, B. D.

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Levitt, J.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Lewis, J. A.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Liu, J.

Lovett, M. L.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Luiten, A. N.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

MacLeod, J.

J. MacLeod and F. Rosei, “PHOTONIC CRYSTALS Sustainable sensors from silk,” Nat. Mater. 12(2), 98–100 (2013).
[Crossref] [PubMed]

Martin, A. L.

McConney, M.

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Migliaresi, C.

A. Motta, L. Fambri, and C. Migliaresi, “Regenerated silk fibroin films: Thermal and dynamic mechanical analysis,” Macromol. Chem. Phys. 203(10-11), 1658–1665 (2002).
[Crossref]

Min, B.

B. Min, L. Yang, and K. Vahala, “Perturbative analytic theory of an ultrahigh-Q toroidal microcavity,” Phys. Rev. A 76(1), 013823 (2007).
[Crossref]

Motta, A.

A. Motta, L. Fambri, and C. Migliaresi, “Regenerated silk fibroin films: Thermal and dynamic mechanical analysis,” Macromol. Chem. Phys. 203(10-11), 1658–1665 (2002).
[Crossref]

Naik, R. R.

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Omenetto, F. G.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Materials--A Road to Sustainable High Technology,” Adv. Mater. 24(21), 2824–2837 (2012).
[Crossref] [PubMed]

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Panilaitis, B. J. B.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Parker, S. T.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

Preda, R. C.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

Pritchard, E. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Rockwood, D. N.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

Rosei, F.

J. MacLeod and F. Rosei, “PHOTONIC CRYSTALS Sustainable sensors from silk,” Nat. Mater. 12(2), 98–100 (2013).
[Crossref] [PubMed]

Saravanan, D.

D. Saravanan, “Spider Silk - Structure, Properties and Spinning,” J. Text. Apparel, Technol. Manag. 5, 1–20 (2006).

Sassaroli, A.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Savchenkov, A. A.

Schliesser, A.

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Siebert, S. M.

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Singamaneni, S.

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Srinivasan, A.

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007).
[Crossref] [PubMed]

Stace, T. M.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Sun, F.-W.

Sun, H. B.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Sun, S. M.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sun, Y. L.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Tao, H.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Materials--A Road to Sustainable High Technology,” Adv. Mater. 24(21), 2824–2837 (2012).
[Crossref] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Tsukruk, V. V.

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

B. Min, L. Yang, and K. Vahala, “Perturbative analytic theory of an ultrahigh-Q toroidal microcavity,” Phys. Rev. A 76(1), 013823 (2007).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Vahala, K. J.

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007).
[Crossref] [PubMed]

A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, C. Y.

Wang, L.

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Wang, X.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

Weng, W.

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

Xiao, Y. F.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Y.-F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

Xiong, J. J.

Xue, C.-Y.

Yan, S.-B.

Yan, Y.-Z.

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Y.-F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

B. Min, L. Yang, and K. Vahala, “Perturbative analytic theory of an ultrahigh-Q toroidal microcavity,” Phys. Rev. A 76(1), 013823 (2007).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004).
[Crossref] [PubMed]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

Yücel, T.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

Zhang, W.-D.

Zhang, Y.-G.

Zheng, B. Y.

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Zou, C.-L.

Adv. Mater. (4)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk Materials--A Road to Sustainable High Technology,” Adv. Mater. 24(21), 2824–2837 (2012).
[Crossref] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21(23), 2411–2415 (2009).
[Crossref]

M. K. Gupta, S. Singamaneni, M. McConney, L. F. Drummy, R. R. Naik, and V. V. Tsukruk, “A facile fabrication strategy for patterning protein chain conformation in silk materials,” Adv. Mater. 22(1), 115–119 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Biomacromolecules (1)

B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules 9(4), 1214–1220 (2008).
[Crossref] [PubMed]

J. Text. Apparel, Technol. Manag. (1)

D. Saravanan, “Spider Silk - Structure, Properties and Spinning,” J. Text. Apparel, Technol. Manag. 5, 1–20 (2006).

Macromol. Chem. Phys. (1)

A. Motta, L. Fambri, and C. Migliaresi, “Regenerated silk fibroin films: Thermal and dynamic mechanical analysis,” Macromol. Chem. Phys. 203(10-11), 1658–1665 (2002).
[Crossref]

Nano Lett. (1)

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. MacLeod and F. Rosei, “PHOTONIC CRYSTALS Sustainable sensors from silk,” Nat. Mater. 12(2), 98–100 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Nat. Protoc. (1)

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6(10), 1612–1631 (2011).
[Crossref] [PubMed]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

B. Min, L. Yang, and K. Vahala, “Perturbative analytic theory of an ultrahigh-Q toroidal microcavity,” Phys. Rev. A 76(1), 013823 (2007).
[Crossref]

Phys. Rev. Lett. (1)

W. Weng, J. D. Anstie, T. M. Stace, G. Campbell, F. N. Baynes, and A. N. Luiten, “Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit,” Phys. Rev. Lett. 112(16), 160801 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

H. Tao, J. M. Kainerstorfer, S. M. Siebert, E. M. Pritchard, A. Sassaroli, B. J. B. Panilaitis, M. A. Brenckle, J. J. Amsden, J. Levitt, S. Fantini, D. L. Kaplan, and F. G. Omenetto, “Implantable, multifunctional, bioresorbable optics,” Proc. Natl. Acad. Sci. U.S.A. 109(48), 19584–19589 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. L. Sun, Z. S. Hou, S. M. Sun, B. Y. Zheng, J. F. Ku, W. F. Dong, Q. D. Chen, and H. B. Sun, “Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness,” Sci. Rep. 5, 12852 (2015).
[Crossref] [PubMed]

Science (1)

F. G. Omenetto and D. L. Kaplan, “New opportunities for an ancient material,” Science 329(5991), 528–531 (2010).
[Crossref] [PubMed]

Other (1)

X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” http://arxiv.org/abs/1607.04651 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Flow diagram illustrating the fabrication process of the silk toroids. 1) Bombyx mori Silkworm cocoons. 2) Regenerated silk fibroin solution was extracted from silk cocoon. 3) On-chip microtoroid resonator array was fabricated on a silicon wafer. 4) A negative phase PMDS mold mask was made from ultra-high-Q microtoroids on a silicon chip. 5) Transparent film with silk fibroin microresonator was obtained by dry-casting silk solution in the PDMS mold. 6) Optical image of a silk microtoroid resonator with diameter of 80 μm. Scale bar: (1) 5 cm, (2) 2 cm, (3)-(5) 5 mm, and (6) 40 μm. (b) Side-view and zoom-in top-view of the scanning electron microscopy (SEM) image of a silk fibroin microtoroid with diameter of 80 μm. Scale bar: 50 μm (sideview) and 5 μm (topview). The silk microresonator was coated with gold to obtain a better SEM image.
Fig. 2
Fig. 2 (a) Illustration of the setup for testing and measuring the transmission spectrum of the silk fibroin microresonators. (b) Normalized transmission spectrum (blue curve) and the corresponding Lorentzian fitting (red curve) of a WGM in the silk fibroin microtoroid. (c) Wide-range transmission spectrum showing the free spectral range of the silk fibroin microtoroid.
Fig. 3
Fig. 3 Experimental Q factor of silk microtoroidal resonator in different wavelength bands. Inset: Atomic force microscopy (AFM) measurement of toroid’s exterior surface, with scanning area: 1 μm × 1 μm and Ra = 1.849 nm, showing that the surface roughness is small.
Fig. 4
Fig. 4 Resonant wavelength shift versus the temperature change for silk microtoroids with (circle) and without (triangle) methanol (MeOH) treatment. Silk microtoroid donminated by Silk I displayed a sensitity of −0.72 nm/K, while methanol treated silk resonator showed a higher sensitivity of −1.17 nm/K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dλ dT = λ r ( 1 n eff d n eff dT + 1 D dD dT )

Metrics