Abstract

Film display holograms typically diffract light over a wide enough view-angle to be viewed, directly, without intervening optics. However, all holographic video displays (with the exception of eye-tracked systems) must use optics beyond the hologram surface to overcome the challenges of small display extent and low diffraction angle by using some form of demagnification and derotation (i.e. angle magnification and optical multiplexing). We report a leaky mode waveguide spatial light modulator with sufficiently high angular diffraction to obviate the need for demagnification in scanned aperture systems. This high angle was achieved by performing a number of experiments to determine the depth of the annealed, proton-exchanged waveguide which corresponded to a maximized diffracted angle. Diffraction sweeps were recorded in excess of 19.5° (corresponding to only 70 MHz of input bandwidth) for 632.8 nm light which is above the 15° required for direct view display. Device geometries are proposed which might achieve greater than 20° of total angular sweep for red, green, and blue light.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color

S. McLaughlin, C. Leach, A. Henrie, and D. E. Smalley
Appl. Opt. 54(12) 3732-3736 (2015)

Paired leaky mode spatial light modulators with a 28° total deflection angle

Kamran Qaderi, Christopher Leach, and Daniel E. Smalley
Opt. Lett. 42(7) 1345-1348 (2017)

Backside emission leaky-mode modulators

Stephen McLaughlin, Andrew Henrie, Scott Gneiting, and Daniel E. Smalley
Opt. Express 25(17) 20622-20627 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J.S. Kollin, S.A. Benton, and M.L. Jepsen, “Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator,” Proc. SPIE 1136, Holographic Optics II: Principles and Applications, 178–185 (1989).
    [Crossref]
  2. P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.
  3. P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
    [Crossref]
  4. P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
    [Crossref]
  5. S. A. Benton, “The second generation of the MIT holographic video system,” in Proc. of the TAO First International Symposium on Three Dimensional Image Communication Technologies, (Tokyo, Japan, 6–7 December 1993), pp. S-3-1-1 to -6.
  6. A. Henrie, B. Haymore, and D. E. Smalley, “Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators,” Review of Scientific Instruments 86(2), 023101 (2015).
    [Crossref] [PubMed]
  7. S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.
  8. S. McLaughlin, C. Leach, A. Henrie, and D. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54, 3732–3736 (2015).
    [Crossref]
  9. S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).
  10. A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(1), 16–28 (2000).
    [Crossref]
  11. U. Rust and E. Strake, “Acoustooptical coupling of guided to substrate modes in planar proton-exchanged LiNbO3-waveguides,” Paderborn Univ (Germany FR) (1992).
  12. G. W. Farnell and E. L. Adler., “Elastic wave propagation in thin layers,” Physical Acoustics 9, 35–127 (2012).
    [Crossref]
  13. A. Korpel, Acousto-optics (CRC Press, 1996).
  14. Yariv Amnon and Pochi Yeh, Optical waves in crystals (Wiley, New York, 1984).
  15. S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

2016 (1)

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

2015 (2)

S. McLaughlin, C. Leach, A. Henrie, and D. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54, 3732–3736 (2015).
[Crossref]

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators,” Review of Scientific Instruments 86(2), 023101 (2015).
[Crossref] [PubMed]

2012 (1)

G. W. Farnell and E. L. Adler., “Elastic wave propagation in thin layers,” Physical Acoustics 9, 35–127 (2012).
[Crossref]

2000 (1)

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(1), 16–28 (2000).
[Crossref]

1992 (1)

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
[Crossref]

1990 (1)

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

1989 (1)

J.S. Kollin, S.A. Benton, and M.L. Jepsen, “Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator,” Proc. SPIE 1136, Holographic Optics II: Principles and Applications, 178–185 (1989).
[Crossref]

Adler., E. L.

G. W. Farnell and E. L. Adler., “Elastic wave propagation in thin layers,” Physical Acoustics 9, 35–127 (2012).
[Crossref]

Amnon, Yariv

Yariv Amnon and Pochi Yeh, Optical waves in crystals (Wiley, New York, 1984).

Benton, S. A.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
[Crossref]

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

S. A. Benton, “The second generation of the MIT holographic video system,” in Proc. of the TAO First International Symposium on Three Dimensional Image Communication Technologies, (Tokyo, Japan, 6–7 December 1993), pp. S-3-1-1 to -6.

Benton, S.A.

J.S. Kollin, S.A. Benton, and M.L. Jepsen, “Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator,” Proc. SPIE 1136, Holographic Optics II: Principles and Applications, 178–185 (1989).
[Crossref]

Bove, V. M.

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

DeGraw, T.

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Do, N.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(1), 16–28 (2000).
[Crossref]

Farnell, G. W.

G. W. Farnell and E. L. Adler., “Elastic wave propagation in thin layers,” Physical Acoustics 9, 35–127 (2012).
[Crossref]

Gneiting, S.

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Haymore, B.

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators,” Review of Scientific Instruments 86(2), 023101 (2015).
[Crossref] [PubMed]

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Henrie, A.

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

S. McLaughlin, C. Leach, A. Henrie, and D. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54, 3732–3736 (2015).
[Crossref]

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators,” Review of Scientific Instruments 86(2), 023101 (2015).
[Crossref] [PubMed]

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Hubel, P. M.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
[Crossref]

Jepsen, M. L.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

Jepsen, M.L.

J.S. Kollin, S.A. Benton, and M.L. Jepsen, “Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator,” Proc. SPIE 1136, Holographic Optics II: Principles and Applications, 178–185 (1989).
[Crossref]

Jolly, S.

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

Kimball, J.

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Kollin, J.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

Kollin, J.S.

J.S. Kollin, S.A. Benton, and M.L. Jepsen, “Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator,” Proc. SPIE 1136, Holographic Optics II: Principles and Applications, 178–185 (1989).
[Crossref]

Korpel, A.

A. Korpel, Acousto-optics (CRC Press, 1996).

Leach, C.

S. McLaughlin, C. Leach, A. Henrie, and D. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54, 3732–3736 (2015).
[Crossref]

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

Lucente, M. E.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
[Crossref]

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

Matteo, A. M.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(1), 16–28 (2000).
[Crossref]

McClaughlin, S.

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

McLaughlin, S.

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

S. McLaughlin, C. Leach, A. Henrie, and D. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54, 3732–3736 (2015).
[Crossref]

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Pappu, R.

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

Qaderi, K.

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Rust, U.

U. Rust and E. Strake, “Acoustooptical coupling of guided to substrate modes in planar proton-exchanged LiNbO3-waveguides,” Paderborn Univ (Germany FR) (1992).

Smalley, D.

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

S. McLaughlin, C. Leach, A. Henrie, and D. Smalley, “Optimized guided-to-leaky-mode device for graphics processing unit controlled frequency division of color,” Appl. Opt. 54, 3732–3736 (2015).
[Crossref]

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

Smalley, D. E.

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators,” Review of Scientific Instruments 86(2), 023101 (2015).
[Crossref] [PubMed]

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

Sparrell, C. J.

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

St-Hilaire, P.

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
[Crossref]

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

Strake, E.

U. Rust and E. Strake, “Acoustooptical coupling of guided to substrate modes in planar proton-exchanged LiNbO3-waveguides,” Paderborn Univ (Germany FR) (1992).

Sutter, J. D.

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

Tsai, C. S.

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(1), 16–28 (2000).
[Crossref]

Underkoffler, J. S.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

Yeh, Pochi

Yariv Amnon and Pochi Yeh, Optical waves in crystals (Wiley, New York, 1984).

Yoshikawa, H.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

Appl. Opt. (1)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (1)

A. M. Matteo, C. S. Tsai, and N. Do, “Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47(1), 16–28 (2000).
[Crossref]

JoVE (Journal of Visualized Experiments) (1)

S. Gneiting, J. Kimball, A. Henrie, S. McLaughlin, T. DeGraw, and D. Smalley, “Characterization of Anisotropic Leaky Mode Modulators for Holovideo,” JoVE (Journal of Visualized Experiments) 109, e53889 (2016).

Physical Acoustics (1)

G. W. Farnell and E. L. Adler., “Elastic wave propagation in thin layers,” Physical Acoustics 9, 35–127 (2012).
[Crossref]

Proc. SPIE (3)

J.S. Kollin, S.A. Benton, and M.L. Jepsen, “Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator,” Proc. SPIE 1136, Holographic Optics II: Principles and Applications, 178–185 (1989).
[Crossref]

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, Practical Holography IV, 174–182 (1990).
[Crossref]

P. St-Hilaire, S. A. Benton, M. E. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, Practical Holography VI, 73–84 (1992).
[Crossref]

Review of Scientific Instruments (1)

A. Henrie, B. Haymore, and D. E. Smalley, “Frequency Division Color Characterization Apparatus for Anisotropic Leaky Mode Light Modulators,” Review of Scientific Instruments 86(2), 023101 (2015).
[Crossref] [PubMed]

Other (7)

S. McClaughlin, C. Leach, A. Henrie, D. Smalley, S. Jolly, and V. M. Bove, “Frequency Division of Color for Holovideo Displays using Anisotropic Leaky Mode Couplers,” in Digital Holography and Three-Dimensional Imaging, 2015, p. DM2A. 2.

S. Gneiting, D. E. Smalley, K. Qaderi, A. Henrie, B. Haymore, S. McLaughlin, J. Kimball, C. Leach, and T. DeGraw, “Optimizations for Robust, High-Efficiency, Waveguide-Based Holographic Video,” 14th IEEE International Conference on Industrial Informatics (Futuroscope-Poitiers, France, 2016) (to be published).

S. A. Benton, “The second generation of the MIT holographic video system,” in Proc. of the TAO First International Symposium on Three Dimensional Image Communication Technologies, (Tokyo, Japan, 6–7 December 1993), pp. S-3-1-1 to -6.

P. St-Hilaire, M. E. Lucente, J. D. Sutter, R. Pappu, C. J. Sparrell, and S. A. Benton, “Scaling up the MIT holographic video system,” in Display Holography: Fifth International Symposium (1995), pp. 374–380.

A. Korpel, Acousto-optics (CRC Press, 1996).

Yariv Amnon and Pochi Yeh, Optical waves in crystals (Wiley, New York, 1984).

U. Rust and E. Strake, “Acoustooptical coupling of guided to substrate modes in planar proton-exchanged LiNbO3-waveguides,” Paderborn Univ (Germany FR) (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) 15° is needed for eye to view a static hologram with both stereopsis and motion parallax at a standard viewing distance of 500 mm from the hologram. b) 3° deflection of a typical spatial light modulator adds the need for a telescope to increase the view angle to 15° by utilizing the two lenses of different focal length. The light is also optically multiplexed via a scanner. c) Our fabricated device with deflection of larger than 15° used in the holovideo without demagnification (the focal length of both lenses is the same). d) It is now possible to multiplex devices physically to enable direct-view architectures.
Fig. 2
Fig. 2 Leaky-Wave device physics. a) TE light enters the waveguide as a high-order guided mode, then, interacts anisotropically with the surface acoustic wave. The result of this interaction is that a portion of the guided light is polarization rotated and therefore no longer guided. The light then exits the waveguide as TM-polarized leaky-mode light. b) Light illuminating a grating at the normal deflects less than light which illuminates the grating from glancing angles (as is the case for light interacting with a grating in a waveguide) c) This graphic shows the k-space diagram for the cases of normal and near-colinear illumination which enable widely disparate deflections given the same grating period.
Fig. 3
Fig. 3 Modulation amplitude of the offdiagonal dielectric tensor element, Δεr, for a specific proton-exchanged device which is mainly responsible for the conversion of TE-guided modes to TM-leaky modes in proton-exchanged lithium niobate. [From Rust and Strake, PADERBORN UNIV (GERMANY FR) (1992). [11]]
Fig. 4
Fig. 4 Fabrication process. a) The slab waveguide is created via proton exchanging the device. The interdigital transducers are written on the aluminum side of the sample. The light interaction length in this device is 4 mm. b) The smallest spacing (p) between the fingers is 6.54 (μm) and the maximum is 9.74 (μm). Width (W) and length (L) of the IDTs are 100 (μm) and 800 (μm) respectively. c) The index profile of the device. neg, nog, nes, and nes are the ordinary and extraordinary refractive indexes of the waveguide and the substrate
Fig. 5
Fig. 5 Apparatus used for data acquisition.
Fig. 6
Fig. 6 Angular Bandwidth. For example, for red, the highest guided mode in sample Y2 is TE2. Transitions from TE2 to the leaky mode have an angular bandwidth in excess of 19°. This angular output along with the angular output for sample Y3 forms the local and global maxima for the highest order transition for all depths
Fig. 7
Fig. 7 Bandwidth for RGB of multiple devices.
Fig. 8
Fig. 8 Method of doubling the deflection angle. a) Unilateral angular output from one device. b) Bilateral angular output from two devices glued together (both positive and negative angles). c) Bilateral angular output with one monolithic device having waveguide and IDTs at both sides of the sample.

Tables (1)

Tables Icon

Table 1 Mode characteristics of different devices with different waveguides’ depth. The first four columns shows the device label, proton exchange time, waveguide depth, and number of guided modes respectively. The fifth column identifies the highest guided mode leaky mode transition and the sixth column gives the guided to leaky mode transition originated from the second highest guided mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin θ 1 sin θ in = m λ Λ θ 1 = arcsin ( sin θ in + m λ Λ ) ,
n air sin θ out = n sub sin θ 1 θ out = arcsin ( n sub sin θ 1 ) ,
K = ω ε o 4 E n ( x ) . [ Δ ε r ( x ) ] . E ν ( x ) d x ,
d = 4 D t ,

Metrics