Abstract

In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manufacturing problem contest [invited]

Daniel Poitras, Li Li, Michael Jacobson, and Catherine Cooksey
Appl. Opt. 56(4) C1-C10 (2017)

Optical interference coating design contest 2016: a dispersive mirror and coating uniformity challenge

Jennifer D. T. Kruschwitz, Vladimir Pervak, Jason Keck, Ilya Bolshakov, Zachary Gerig, Fabien Lemarchand, Kageyuki Sato, William Southwell, Muneo Sugiura, Michael Trubetskov, and Wenjia Yuan
Appl. Opt. 56(4) C151-C162 (2017)

Semi-automated method for the determination of the all-optical monitoring strategy of complex thin-film filters

M. Vignaux, F. Lemarchand, T. Begou, C. Grezes-Besset, and J. Lumeau
Opt. Express 27(9) 12373-12390 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  2. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [Crossref] [PubMed]
  3. M. Trubetskov, T. Amotchkina, and A. Tikhonravov, “Automated construction of monochromatic monitoring strategies,” Appl. Opt. 54(8), 1900–1909 (2015).
    [Crossref] [PubMed]
  4. H. Ehlers and D. Ristau, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 1(11), S10203 (2013).
  5. A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).
  6. K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
    [Crossref]
  7. M. Scherer, J. Pistner, and W. Lehnert, “UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS),” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper MA7.
    [Crossref]
  8. T. Begou, H. Krol, D. Stojcevski, F. Lemarchand, M. Lequime, C. Grezes-Besset, and J. Lumeau, “Complex optical interference filter with stress compensation,” Proc. SPIE 9627, “Optical Systems Design 2015,” Advances in Optical Thin Films V, 96270R (2015).
  9. T. Amotchkina, M. K. Trubetskov, Y. Pervak, L. Veisz, and V. Pervak, “Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice,” Opt. Express 22(24), 30387–30393 (2014).
    [Crossref] [PubMed]
  10. Optics Balzers, “Design and manufacturing of spectral filters with low large angle scatter,” ESA project Summary report, LLAS-RP-OBJ-1030, Issue A2, 21/11/2014.
  11. H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
    [Crossref]
  12. K. Olson, A. Ogloza, J. Thomas, and J. Talghader, “High power laser heating of low absorption materials,” J. Appl. Phys. 116(12), 123106 (2014).
    [Crossref]
  13. L. Frey, P. Parrein, L. Virot, C. Pellé, and J. Raby, “Thin film characterization for modeling and optimization of silver-dielectric color filters,” Appl. Opt. 53(8), 1663–1673 (2014).
    [Crossref] [PubMed]
  14. S. Yang, “Circular, variable, broad-bandpass filters with induced transmission at 200-1100 nm,” Appl. Opt. 32(25), 4836–4842 (1993).
    [Crossref] [PubMed]
  15. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi. 4(6), 1986–1990 (2007).
    [Crossref]
  16. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “Topical meeting on Optical Interference Coatings (OIC’2001): manufacturing problem,” Appl. Opt. 41(16), 3039–3052 (2002).
    [Crossref] [PubMed]
  17. J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, “2004 Optical Society Of America’s Topical Meeting on Optical Interference Coatings: Manufacturing Problem,” Appl. Opt. 45(7), 1303–1311 (2006).
    [Crossref] [PubMed]
  18. J. A. Dobrowolski, L. Li, M. Jacobson, and D. W. Allen, “2010 topical meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 50(9), C408–C419 (2011).
    [Crossref] [PubMed]
  19. L. Li, J. A. Dobrowolski, M. Jacobson, and C. Cooksey, “Broadband transmission filters from the 2013 Optical Interference Coatings manufacturing problem contest [invited],” Appl. Opt. 53(4), A248–A258 (2014).
    [Crossref] [PubMed]
  20. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 topical meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 47(13), C231–C245 (2008).
    [Crossref] [PubMed]
  21. http://www.osa.org/en-us/meetings/topical_meetings/optical_interference_coatings/oic_current_topic_problem_contests/
  22. D. Poitras, L. Li, M. R. Jacobson, and C. Cooksey, “OIC 2016 manufacturing problem contest,” in Optical Interference Coatings 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper WC.1.
    [Crossref]
  23. F. Lemarchand, “Application of clustering global optimization to thin film design problems,” Opt. Express 22(5), 5166–5176 (2014).
    [Crossref] [PubMed]
  24. J. A. Dobrowolski, “Completely automatic synthesis of optical thin film systems,” Appl. Opt. 4(8), 937–946 (1965).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [Crossref]
  26. A. Zoeller, M. Boos, H. Hagedorn, W. Klug, and C. Schmitt, “High accurate in-situ optical thickness monitoring,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper TuE10.
    [Crossref]
  27. R. R. Willey, “Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings,” Appl. Opt. 53(4), A27–A34 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (6)

2013 (2)

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

H. Ehlers and D. Ristau, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 1(11), S10203 (2013).

2012 (1)

2011 (1)

2008 (3)

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 topical meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 47(13), C231–C245 (2008).
[Crossref] [PubMed]

A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
[Crossref]

2007 (2)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi. 4(6), 1986–1990 (2007).
[Crossref]

2006 (1)

2002 (1)

1993 (1)

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

1965 (1)

Allen, D. W.

Amotchkina, T.

Bessaïs, B.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi. 4(6), 1986–1990 (2007).
[Crossref]

Boos, M.

A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).

Bouaïcha, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi. 4(6), 1986–1990 (2007).
[Crossref]

Browning, S.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Cooksey, C.

DeBell, G. W.

Dobrowolski, J. A.

Ehlers, H.

H. Ehlers and D. Ristau, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 1(11), S10203 (2013).

Fang, M.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Frey, L.

Hagedorn, H.

A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).

Hendrix, K. D.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
[Crossref]

Hulse, C. A.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
[Crossref]

Jacobson, M.

Jacobson, M. R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Khardani, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi. 4(6), 1986–1990 (2007).
[Crossref]

Lemarchand, F.

Li, L.

Nadal, M.

Ockenfuss, G. J.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
[Crossref]

Ogloza, A.

K. Olson, A. Ogloza, J. Thomas, and J. Talghader, “High power laser heating of low absorption materials,” J. Appl. Phys. 116(12), 123106 (2014).
[Crossref]

Olson, K.

K. Olson, A. Ogloza, J. Thomas, and J. Talghader, “High power laser heating of low absorption materials,” J. Appl. Phys. 116(12), 123106 (2014).
[Crossref]

Parrein, P.

Pellé, C.

Pervak, V.

Pervak, Y.

Qi, H.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Raby, J.

Ristau, D.

H. Ehlers and D. Ristau, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 1(11), S10203 (2013).

Romanov, B.

A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).

Sargent, R. B.

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
[Crossref]

Shao, J.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Shao, S.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Talghader, J.

K. Olson, A. Ogloza, J. Thomas, and J. Talghader, “High power laser heating of low absorption materials,” J. Appl. Phys. 116(12), 123106 (2014).
[Crossref]

Thomas, J.

K. Olson, A. Ogloza, J. Thomas, and J. Talghader, “High power laser heating of low absorption materials,” J. Appl. Phys. 116(12), 123106 (2014).
[Crossref]

Tikhonravov, A.

Tikhonravov, A. V.

Trubetskov, M.

Trubetskov, M. K.

Veisz, L.

Virot, L.

Wei, C.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Willey, R. R.

Yang, S.

Yi, K.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Zhu, M.

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

Zöller, A.

A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).

Appl. Opt. (12)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[Crossref] [PubMed]

M. Trubetskov, T. Amotchkina, and A. Tikhonravov, “Automated construction of monochromatic monitoring strategies,” Appl. Opt. 54(8), 1900–1909 (2015).
[Crossref] [PubMed]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “Topical meeting on Optical Interference Coatings (OIC’2001): manufacturing problem,” Appl. Opt. 41(16), 3039–3052 (2002).
[Crossref] [PubMed]

J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, “2004 Optical Society Of America’s Topical Meeting on Optical Interference Coatings: Manufacturing Problem,” Appl. Opt. 45(7), 1303–1311 (2006).
[Crossref] [PubMed]

J. A. Dobrowolski, L. Li, M. Jacobson, and D. W. Allen, “2010 topical meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 50(9), C408–C419 (2011).
[Crossref] [PubMed]

L. Li, J. A. Dobrowolski, M. Jacobson, and C. Cooksey, “Broadband transmission filters from the 2013 Optical Interference Coatings manufacturing problem contest [invited],” Appl. Opt. 53(4), A248–A258 (2014).
[Crossref] [PubMed]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 topical meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 47(13), C231–C245 (2008).
[Crossref] [PubMed]

L. Frey, P. Parrein, L. Virot, C. Pellé, and J. Raby, “Thin film characterization for modeling and optimization of silver-dielectric color filters,” Appl. Opt. 53(8), 1663–1673 (2014).
[Crossref] [PubMed]

S. Yang, “Circular, variable, broad-bandpass filters with induced transmission at 200-1100 nm,” Appl. Opt. 32(25), 4836–4842 (1993).
[Crossref] [PubMed]

J. A. Dobrowolski, “Completely automatic synthesis of optical thin film systems,” Appl. Opt. 4(8), 937–946 (1965).
[Crossref]

R. R. Willey, “Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings,” Appl. Opt. 53(4), A27–A34 (2014).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

H. Ehlers and D. Ristau, “Advanced control and modeling of deposition processes,” Chin. Opt. Lett. 1(11), S10203 (2013).

High Power Laser Science and Engineering (1)

H. Qi, M. Zhu, M. Fang, S. Shao, C. Wei, K. Yi, and J. Shao, “Development of high-power laser coatings,” High Power Laser Science and Engineering 1(1), 36–43 (2013).
[Crossref]

J. Appl. Phys. (1)

K. Olson, A. Ogloza, J. Thomas, and J. Talghader, “High power laser heating of low absorption materials,” J. Appl. Phys. 116(12), 123106 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Phys. Status Solidi. (1)

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi. 4(6), 1986–1990 (2007).
[Crossref]

Proc. SPIE (2)

A. Zöller, M. Boos, H. Hagedorn, and B. Romanov, “Computer simulation of coating processes with monochromatic monitoring,” Proc. SPIE 7101, 71010G (2008).

K. D. Hendrix, C. A. Hulse, G. J. Ockenfuss, and R. B. Sargent, “Demonstration of narrowband notch and multi-notch filters,” Proc. SPIE 7067, 706702 (2008).
[Crossref]

Other (6)

M. Scherer, J. Pistner, and W. Lehnert, “UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS),” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper MA7.
[Crossref]

T. Begou, H. Krol, D. Stojcevski, F. Lemarchand, M. Lequime, C. Grezes-Besset, and J. Lumeau, “Complex optical interference filter with stress compensation,” Proc. SPIE 9627, “Optical Systems Design 2015,” Advances in Optical Thin Films V, 96270R (2015).

Optics Balzers, “Design and manufacturing of spectral filters with low large angle scatter,” ESA project Summary report, LLAS-RP-OBJ-1030, Issue A2, 21/11/2014.

http://www.osa.org/en-us/meetings/topical_meetings/optical_interference_coatings/oic_current_topic_problem_contests/

D. Poitras, L. Li, M. R. Jacobson, and C. Cooksey, “OIC 2016 manufacturing problem contest,” in Optical Interference Coatings 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper WC.1.
[Crossref]

A. Zoeller, M. Boos, H. Hagedorn, W. Klug, and C. Schmitt, “High accurate in-situ optical thickness monitoring,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper TuE10.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Theoretical spectral targets of a Moose head. In solid line – Transmittance and in dotted line – Reflectance at 7° angle of incidence.
Fig. 2
Fig. 2 Profile of the real part of the refractive index (vs. thickness) for the design #D3-7.
Fig. 3
Fig. 3 MF value sensitivity on a small thickness variation ( + 0.2 nm) of a single layers of design #D3-7 and for each layer while keeping all other thickness equal to the designed one. Red point identifies the metallic layer.
Fig. 4
Fig. 4 Spectral dependence of the transmission of the test glass #T1-1 (left, a) and #T1-3 (right, b) of Part 1. In blue the theory and in red the experimental one.
Fig. 5
Fig. 5 Spectral dependence of the transmission of the glass substrate coated with the whole Part 1. In blue the theory and in red the experimental one.
Fig. 6
Fig. 6 Spectral dependence of the transmission (solid line) and the reflection (dashed line) of the glass substrate coated with the layers 65 to 69. In red experimental data, in blue theoretical data with chromium index from [24] and in green theoretical data with new chromium index.
Fig. 7
Fig. 7 Spectral dependence of the transmission of the test glass #T3-1 (left, a) and #T3-2 (right, b) of Part 3. In blue the theory and in red the experimental one.
Fig. 8
Fig. 8 Spectral dependence of the transmission of the glass substrate coated with the whole Part 3. In blue the theory and in red the experimental one.
Fig. 9
Fig. 9 Spectral dependence of the transmission and the reflection of the glass substrate coated with the whole stack defining the moose head. In red the OIC target and in blue the experimental curve.

Tables (8)

Tables Icon

Table 1 Designs Associated with an Aingle Reflectance Target

Tables Icon

Table 2 Designs Associated with a Single Transmittance Target

Tables Icon

Table 3 Designs Associated with both Reflectance and Transmittance Targets

Tables Icon

Table 4 Monitoring Strategy of the Part 1 of the Multilayer Design

Tables Icon

Table 5 Average Error between Theory and Experiment for Each of the Different Test Glass and for the Substrate Coated with the Whole Part 1

Tables Icon

Table 6 Comparison between the Values of the Extracted Real Part (n(λ0)) and Imaginary Part (k(λ0)) of the Refractive Index of the Chromium Layer and the One of the Literature for a Few Distinct Wavelengths [25]

Tables Icon

Table 7 Monitoring Strategy of the Part 3 of the Multilayer Design

Tables Icon

Table 8 Average Error between Theory and Experiment for Each of the Different Test Glass and for the Substrate Coated with the Whole Part 3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MF=  1 2N [ i=1 N ( T i T exp,i ) 2 + ( R i R exp,i ) 2 ] 1/2 .

Metrics