Abstract

We propose a new concept of separating images through a directional guide of multi-visuals by using structured prism or pyramid arrays. By placing prism arrays onto two different image arrays, the two collective images below the facets are guided to different directions. Using optical calculations, we identify a condition for successful image separation. Transparent pyramid arrays are used to separate four images into four directions. The direction of refracted rays can be controlled by the refractive index of prisms and liquid filled into the voids. In addition, the images can be switched by stretching and releasing an elastomeric prism array.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super flexible GaN light emitting diodes using microscale pyramid arrays through laser lift-off and dual transfer

Zhenhuan Tian, Yufeng Li, Xilin Su, Lungang Feng, Shuai Wang, Wen Ding, Qiang Li, Ye Zhang, Maofeng Guo, Feng Yun, and S. W. Ricky Lee
Opt. Express 26(2) 1817-1824 (2018)

Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion

Funda Tamara Gundogdu, Andriy E. Serebryannikov, A. Ozgur Cakmak, and Ekmel Ozbay
Opt. Express 23(19) 24120-24132 (2015)

Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device

Lin Pang, Uriel Levy, Kyle Campbell, Alex Groisman, and Yeshaiahu Fainman
Opt. Express 13(22) 9003-9013 (2005)

References

  • View by:
  • |
  • |
  • |

  1. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics, 3rd ed. (Pearson/Prentice Hall, 2007).
  2. A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
    [Crossref] [PubMed]
  3. J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
    [Crossref]
  4. S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
    [Crossref] [PubMed]
  5. J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
    [Crossref] [PubMed]
  6. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
    [Crossref] [PubMed]
  7. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  8. G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
    [Crossref] [PubMed]
  9. H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
    [Crossref] [PubMed]
  10. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  11. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
    [Crossref]
  12. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
    [Crossref]
  13. F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
    [Crossref]
  14. M. G. Lippmann, “Épreuves réversibles. Photographies integrals,” Computes Rendosdel’Academie des Sciences 146, 446–451 (1908).
  15. M. Lake, M. Lake, C. Narciso, K. Cowdrick, T. Storey, S. Zhang, J. Zartman, and D. Hoelzle, “Microfluidic device design, fabrication, and testing protocols,” Protoc. Exch. (2015) http://www.nature.com/protocolexchange/protocols/4049 .
  16. S. Valouch, H. Sieber, S. Kettlitz, C. Eschenbaum, U. Hollenbach, and U. Lemmer, “Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing,” Opt. Express 20(27), 28855–28861 (2012).
    [Crossref] [PubMed]
  17. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
    [Crossref] [PubMed]
  18. R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID 2010 Digest 41(1), 218–221 (2010).
    [Crossref]
  19. J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
    [Crossref]
  20. Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
    [Crossref]

2014 (1)

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

2013 (4)

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
[Crossref]

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

2010 (1)

R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID 2010 Digest 41(1), 218–221 (2010).
[Crossref]

2009 (3)

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

A. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009).
[Crossref] [PubMed]

J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
[Crossref]

2005 (1)

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[Crossref]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2001 (2)

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
[Crossref] [PubMed]

1908 (1)

M. G. Lippmann, “Épreuves réversibles. Photographies integrals,” Computes Rendosdel’Academie des Sciences 146, 446–451 (1908).

1902 (1)

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
[Crossref]

Addadi, L.

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

Aizenberg, J.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

Bathiche, S.

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Brott, R.

R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID 2010 Digest 41(1), 218–221 (2010).
[Crossref]

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Bryan, W.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Cai, Z.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
[Crossref]

Char, K.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Choi, S.-J.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[Crossref]

Emerton, N.

England, G.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Eschenbaum, C.

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Fukamib, T.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Hendler, G.

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

Hollenbach, U.

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Ives, F. E.

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
[Crossref]

Jung, J.-H.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Kang, D. S.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Kang, Y. S.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Kettlitz, S.

Khan, M.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Kim, P.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Koh, J. H.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Kolle, M.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Large, T.

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
[Crossref] [PubMed]

Lee, B.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Lee, H. H.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Lee, Y.-G.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Lemmer, U.

Li, D. H.

J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
[Crossref]

Lippmann, M. G.

M. G. Lippmann, “Épreuves réversibles. Photographies integrals,” Computes Rendosdel’Academie des Sciences 146, 446–451 (1908).

Mazur, E.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Muñoz, P.

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Nakao, K.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Oh, S.-G.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Park, J. M.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

Qiu, W.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
[Crossref] [PubMed]

Schultz, J.

R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID 2010 Digest 41(1), 218–221 (2010).
[Crossref]

Schultz, J. C.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Shao, G.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
[Crossref]

Sieber, H.

Suh, K. Y.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Sykora, M.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Takimoto, A.

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Tkachenko, A.

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Travis, A.

Valouch, S.

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
[Crossref] [PubMed]

Wang, Q. H.

J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
[Crossref]

Wang, W.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
[Crossref]

Weiner, S.

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

Wooh, S.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
[Crossref] [PubMed]

Yan, J. R.

J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
[Crossref]

Yoon, H.

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Zhang, J. D.

J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
[Crossref]

Adv. Mater. (1)

S. Wooh, H. Yoon, J.-H. Jung, Y.-G. Lee, J. H. Koh, B. Lee, Y. S. Kang, and K. Char, “Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells,” Adv. Mater. 25, 3111–3116 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Computer (1)

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[Crossref]

Computes Rendosdel’Academie des Sciences (1)

M. G. Lippmann, “Épreuves réversibles. Photographies integrals,” Computes Rendosdel’Academie des Sciences 146, 446–451 (1908).

IEEE Trans. Broadcast (1)

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: A review and applications analysis,” IEEE Trans. Broadcast 57(2), 362–371 (2011).
[Crossref]

J. Disp. Technol. (1)

J. R. Yan, Q. H. Wang, D. H. Li, and J. D. Zhang, “Edge-lighting light guide plate based on micro-prism for liquid crystal display,” J. Disp. Technol. 5(9), 355–357 (2009).
[Crossref]

J. Franklin Inst. (1)

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
[Crossref]

Nat. Commun. (1)

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S.-J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Nature (4)

J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” Nature 412(6849), 819–822 (2001).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colour. Now you see it--now you don’t,” Nature 410(6824), 36 (2001).
[Crossref] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. England, M. Kolle, P. Kim, M. Khan, P. Muñoz, E. Mazur, and J. Aizenberg, “Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna,” Proc. Natl. Acad. Sci. U.S.A. 111(44), 15630–15634 (2014).
[Crossref] [PubMed]

Sens. Actuat. A (1)

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuat. A 204, 44–47 (2013).
[Crossref]

SID 2010 Digest (1)

R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID 2010 Digest 41(1), 218–221 (2010).
[Crossref]

SID Digest. (1)

J. C. Schultz, R. Brott, M. Sykora, W. Bryan, T. Fukamib, K. Nakao, and A. Takimoto, “Late-news paper: full resolution autostereoscopic 3D display for mobile applications,” SID Digest. 40(1), 127–130 (2009).
[Crossref]

Other (2)

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics, 3rd ed. (Pearson/Prentice Hall, 2007).

M. Lake, M. Lake, C. Narciso, K. Cowdrick, T. Storey, S. Zhang, J. Zartman, and D. Hoelzle, “Microfluidic device design, fabrication, and testing protocols,” Protoc. Exch. (2015) http://www.nature.com/protocolexchange/protocols/4049 .

Supplementary Material (5)

NameDescription
» Visualization 1: MP4 (984 KB)      video 1
» Visualization 2: MP4 (1265 KB)      video 2
» Visualization 3: MP4 (327 KB)      video 3
» Visualization 4: MP4 (333 KB)      video4
» Visualization 5: MP4 (415 KB)      video5

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A schematic of a replica molding for the preparation of a transparent ratchet array. (b) A picture of a metallic master prepared by micromachining and (c) by stereo-lithography. (d) A picture of an obtained transparent ratchet array fabricated by the method.
Fig. 2
Fig. 2 (a) A schematic of the asymmetric ratchets used to refract the incident beam. The top images acquired from the left and right sides. From the left, the image under the ratchet array can be seen. From the right, the image is blurred because of refraction and total internal reflection. (b) The demonstration of image separation with the symmetric prism array. When we placed the innate prism array on a mixed image of two different images (the yellow smiley face and the blue 3D image), we could see only the blue 3D logo on the left and the yellow smiley face on the right.
Fig. 3
Fig. 3 (a) A schematic illustration of non-directional image guidance with a prism array of a small prism angle. (b) A scheme of image separation by refraction on facets of a prism array. (c) An overlapped image of two images taken from the right with a prism array in 30 degree prism angle. (d) A picture taken from the right side with a prism array in 45 degrees. Only the smiley face can be seen.
Fig. 4
Fig. 4 (a) A schematic of protruding and recessed pyramid arrays. (b) The concept of separating four different colors and guiding them in different directions. (c) Images of four mixed colors obtained from four different directions and observed through a pyramid array. (d) Images of four letters viewed from four different directions.
Fig. 5
Fig. 5 (a) A scheme of controlling the deviation angle using liquid filler. (b) A mixed image under a prism array. The left half is filled with refractive-index-matching liquid and therefore there is no effect of image separation, whereas only red can be seen in the unfilled region. (c) The concept of switching from the university logo to the smiley face by mechanically stretching an elastomeric prism film. (d) Images taken with the film in its original position and after laterally stretching the elastomeric prism array.

Tables (1)

Tables Icon

Table 1 Comparison of Various Methods to Separate Images

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ * =sin θ in / n prism
sin θ * =sin θ in / n prism <sin α
1 n prism <sinα, α> sin 1 ( 1 n prism )

Metrics