Abstract

We report a novel burst-mode-operated sub-nanosecond fiber Master Oscillator, Power Amplifier (MOPA) system incorporating direct seed-packet shaping without external modulators. A fast digital-to-analog converter with 1 Gsps sampling rate and 16 bit resolution was developed to control the pulse amplitudes and sequences of a distributed feedback semiconductor seed laser to realize packet-shaped burst mode operation. Optical pulses with durations as short as 700 ps and peak power as high as 1 W can be generated from the seed by applying proper reverse voltages after positive electrical pulses to the laser driver to cancel the residual charges at its gate electrode. The average power of the laser can be amplified to nearly 40 W with FWHM spectral linewidth of ~0.12 nm after three stages of polarization maintaining fiber amplifiers. Different packet shapes including ramp-off, Gaussian, square and double rectangle can be produced from the fiber MOPA by finely pre-shaping the seed pulse bursts. It is believed that such a laser has provided a cost-effective solution to the generation of pulse bursts with arbitrary packet shapes for different practical applications including material micromachining and nonlinear frequency conversion.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100  μJ pulse energy in burst-mode-operated hybrid fiber-bulk amplifier system with envelope shaping

Minming Nie, Xueze Cao, Qianag Liu, Encai Ji, and Xing Fu
Opt. Express 25(12) 13557-13566 (2017)

30 mJ, 1 kHz sub-nanosecond burst-mode Nd:YAG laser MOPA system

Wentao Wu, Xudong Li, Feng Mei, Deying Chen, and Renpeng Yan
Opt. Express 27(25) 36129-36136 (2019)

Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas
Opt. Express 14(23) 10996-11001 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref] [PubMed]
  3. Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18(12), 12669–12674 (2010).
    [Crossref] [PubMed]
  4. D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
    [Crossref] [PubMed]
  5. G. Aoust, A. Godard, M. Raybaut, O. Wang, J.-M. Melkonian, and M. Lefebvre, “Optimal pump pulse shapes for optical parametric oscillators,” J. Opt. Soc. Am. B 33(5), 842–849 (2016).
    [Crossref]
  6. L. Wang, Q. Liu, E. Ji, H. Chen, and M. Gong, “4.0 μm, high repetition rate periodically poled magnesium-oxide-doped lithium niobate mid-infrared optical parametric oscillator pumped by steep leading edge pulsed fiber laser,” Appl. Opt. 53(29), 6729–6734 (2014).
    [Crossref] [PubMed]
  7. D. Lin, S. U. Alam, P. S. Teh, K. K. Chen, and D. J. Richardson, “Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA,” Opt. Express 19(3), 2085–2092 (2011).
    [Crossref] [PubMed]
  8. K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
    [Crossref]
  9. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
    [Crossref] [PubMed]
  10. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16(22), 17637–17646 (2008).
    [Crossref] [PubMed]
  11. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17(23), 20927–20937 (2009).
    [Crossref] [PubMed]
  12. D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
    [Crossref]
  13. W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
    [Crossref]
  14. P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
    [Crossref]
  15. K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
    [Crossref]
  16. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” (2016), http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18619.html?WT.feed_name=subjects_ultrafast-lasers .
  17. K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
    [Crossref]
  18. C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
    [Crossref]
  19. P. Elahi, S. Yılmaz, Y. B. Eldeniz, and F. Ö. Ilday, “Generation of picosecond pulses directly from a 100 W, burst-mode, doping-managed Yb-doped fiber amplifier,” Opt. Lett. 39(2), 236–239 (2014).
    [Crossref] [PubMed]
  20. H. Kalaycıoğlu, Ö. Akçaalan, S. Yavaş, Y. B. Eldeniz, and F. Ö. Ilday, “Burst-mode yb-doped fiber amplifier system optimized for low-repetition-rate operation,” J. Opt. Soc. Am. B 32(5), 900–906 (2015).
    [Crossref]
  21. S. Yılmaz, P. Elahi, H. Kalaycıoğlu, and F. Ö. Ilday, “Amplified spontaneous emission in high-power burst-mode fiber lasers,” J. Opt. Soc. Am. B 32(12), 2462–2466 (2015).
    [Crossref]
  22. H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett. 37(13), 2586–2588 (2012).
    [Crossref] [PubMed]
  23. J. Petelin, B. Podobnik, and R. Petkovšek, “Burst shaping in a fiber-amplifier chain seeded by a gain-switched laser diode,” Appl. Opt. 54(15), 4629–4634 (2015).
    [Crossref] [PubMed]
  24. T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
    [Crossref]
  25. I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
    [Crossref]
  26. F. He, J. H. V. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14(26), 12846–12858 (2006).
    [Crossref] [PubMed]

2016 (5)

G. Aoust, A. Godard, M. Raybaut, O. Wang, J.-M. Melkonian, and M. Lefebvre, “Optimal pump pulse shapes for optical parametric oscillators,” J. Opt. Soc. Am. B 33(5), 842–849 (2016).
[Crossref]

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
[Crossref]

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

2015 (4)

2014 (4)

2012 (2)

2011 (1)

2010 (4)

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18(12), 12669–12674 (2010).
[Crossref] [PubMed]

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (2)

1998 (1)

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
[Crossref]

Aallos, V.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Akçaalan, Ö.

Alam, S.

Alam, S. U.

Aoust, G.

Arie, A.

Barness, D.

D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
[Crossref]

Chen, H.

Chen, K. K.

Chen, T.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
[Crossref] [PubMed]

Clarkson, W. A.

Efe, M.

Elahi, P.

Eldeniz, Y. B.

Fan, S.

K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
[Crossref]

Fang, Q.

Fanning, G.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Farrow, R.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Gayer, O.

Ghiringhelli, F.

Godard, A.

Gong, M.

Green, J.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Guo, Y.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
[Crossref]

Gürel, K.

He, F.

Hickey, L. M. B.

Hopkinson, N.

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

Hu, C.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

Hu, W.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Ilday, F. Ö.

Inbar, E.

D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
[Crossref]

Jeong, Y.

Ji, E.

Jiang, P.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

Kalaycioglu, H.

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

King, G.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Koponen, J. J.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Kutscha, T. N.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Lai, X.

K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
[Crossref]

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Lasri, J.

D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
[Crossref]

Lefebvre, M.

Liero, A.

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
[Crossref]

Limpert, J.

Lin, D.

Liu, Q.

Logan, D.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Lowder, T. L.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Malinowski, A.

Mccal, D.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

McComb, T. S.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Melkonian, J.-M.

Mertins, D.

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
[Crossref]

Mumtaz, K. A.

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

Nilsson, J.

Nodop, D.

Norwood, R. A.

Petelin, J.

Petkovšek, R.

Peyghambarian, N.

Podobnik, B.

Price, J. H. V.

Raybaut, M.

Richardson, D. J.

Rowen, E.

D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
[Crossref]

Ruchert, C.

Sacks, Z.

Sahu, J. K.

Salin, F.

Sandner, W.

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
[Crossref]

Schimpf, D. N.

Shalev, N.

D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
[Crossref]

Shen, Y.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
[Crossref] [PubMed]

Shi, W.

Shin, Y. C.

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

Song, J.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Tal, E.

Teh, P. S.

Tünnermann, A.

Vu, K. T.

Wang, L.

Wang, O.

Wei, K.

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
[Crossref]

Wen, R.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Will, I.

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
[Crossref]

Wu, B.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
[Crossref] [PubMed]

Wu, P.

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Yavas, S.

Ye, C.

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Yilmaz, S.

Zervas, M. N.

Zhu, X.

Appl. Opt. (3)

Appl. Phys., A Mater. Sci. Process. (1)

W. Hu, Y. C. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process. 98(2), 407–415 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Will, A. Liero, D. Mertins, and W. Sandner, “Feedback-stabilized Nd: YLF amplifier system for generation of picosecond pulse trains of an exactly rectangular envelope,” IEEE J. Quantum Electron. 34(10), 2020–2028 (1998).
[Crossref]

IEEE Photonics J. (1)

P. Jiang, C. Hu, T. Chen, P. Wu, B. Wu, R. Wen, and Y. Shen, “High power Yb fiber laser with pico-second bursts and the quasi-cynchronously pumping for efficient mid-infrared laser generation in optical parametric oscillator,” IEEE Photonics J. 8(3), 1501807 (2016).
[Crossref]

J. Mater. Process. Technol. (1)

K. A. Mumtaz and N. Hopkinson, “Selective laser melting of thin wall parts using pulse shaping,” J. Mater. Process. Technol. 210(2), 279–287 (2010).
[Crossref]

J. Opt. Soc. Am. B (4)

Laser Phys. (2)

K. Wei, Y. Guo, X. Lai, and S. Fan, “Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output,” Laser Phys. 26(7), 075101 (2016).
[Crossref]

K. Wei, P. Wu, R. Wen, J. Song, Y. Guo, and X. Lai, “High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber,” Laser Phys. 26(2), 025104 (2016).
[Crossref]

Opt. Commun. (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun. 366, 404–409 (2016).
[Crossref]

Opt. Express (7)

D. Lin, S. U. Alam, P. S. Teh, K. K. Chen, and D. J. Richardson, “Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA,” Opt. Express 19(3), 2085–2092 (2011).
[Crossref] [PubMed]

Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18(12), 12669–12674 (2010).
[Crossref] [PubMed]

D. Lin, S. U. Alam, Y. Shen, T. Chen, B. Wu, and D. J. Richardson, “Large aperture PPMgLN based high-power optical parametric oscillator at 3.8 µm pumped by a nanosecond linearly polarized fiber MOPA,” Opt. Express 20(14), 15008–15014 (2012).
[Crossref] [PubMed]

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[Crossref] [PubMed]

D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16(22), 17637–17646 (2008).
[Crossref] [PubMed]

A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17(23), 20927–20937 (2009).
[Crossref] [PubMed]

F. He, J. H. V. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14(26), 12846–12858 (2006).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (2)

D. Barness, E. Rowen, N. Shalev, J. Lasri, and E. Inbar, “Pulse shaping in fiber lasers for high energy micromachining applications,” Proc. SPIE 9344, 934427 (2015).
[Crossref]

T. S. McComb, D. Mccal, R. Farrow, T. L. Lowder, D. Logan, J. Green, T. N. Kutscha, C. Ye, V. Aallos, J. J. Koponen, and G. Fanning, “High peak power, flexible pulse parameter, Chirally Coupled Core (3C®) fiber based picosecond MOPA systems,” Proc. SPIE 8961, 896112 (2014).
[Crossref]

Other (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” (2016), http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18619.html?WT.feed_name=subjects_ultrafast-lasers .

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (4795 KB)      The calculation process to get the required pre-shape of the seed to form square shaped pulse burst after amplification
» Visualization 2: AVI (4639 KB)      The calculation process to get the required pre-shape of the seed to form double rectangle pulse burst after amplification

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the burst-mode-operated, sub-ns fiber MOPA system incorporating direct seed-packet shaping.
Fig. 2
Fig. 2 The electrical drive pulses and the corresponding optical pulses of the seed: (a), (c), (e): drive pulses from the DAC board; (b), (d), (f): measured corresponding optical pulses
Fig. 3
Fig. 3 Amplified laser power as a function of the launched pump power for the main amplifier; the insets show the measured spectra of the seed laser and after three stages of amplification with large wavelength scale (up) and around the peak wavelength of the signal (bottom).
Fig. 4
Fig. 4 The drive voltages of the seeds, measured single bursts together with calculated packet shapes and burst trains after amplification for square-shaped seed bursts with intra-burst repetition rate of 100 MHz; (a)-(c) pulse bursts with inter-burst repetition rate of 250 kHz; (d)-(f) pulse bursts with inter-burst repetition rate of 500 kHz.
Fig. 5
Fig. 5 The drive voltages of the seeds, measured single bursts together with calculated packet shapes and burst trains after amplification for Gaussian shaped seed bursts with intra-burst repetition rate of 100 MHz; (a)-(c) pulse bursts with inter-burst repetition rate of 250 kHz; (d)-(f) pulse bursts with inter-burst repetition rate of 500 kHz.
Fig. 6
Fig. 6 The drive voltages of the seed, measured single bursts together with target packet shapes and burst trains after amplification with intra-burst repetition rate of 100 MHz; (a)-(c) pulse bursts with inter-burst repetition rate of 250 kHz; (d)-(f) pulse bursts with inter-burst repetition rate of 500 kHz. (The calculation process to get the required pre-shape of the seed can be found in Visualization 1)
Fig. 7
Fig. 7 The drive voltages of the seed, measured single bursts together with target packet shapes and burst trains after amplification with intra-burst repetition rate of 100 MHz; (a)-(c) pulse bursts with inter-burst repetition rate of 250 kHz; (d)-(f) pulse bursts with inter-burst repetition rate of 500 kHz. (The calculation process to get the required pre-shape of the seed can be found in Visualization 2)

Metrics