Abstract

A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear phase encoding for holographic data storage with a single phase-only spatial light modulator

Teruyoshi Nobukawa and Takanori Nomura
Appl. Opt. 55(10) 2565-2573 (2016)

Digital super-resolution holographic data storage based on Hermitian symmetry for achieving high areal density

Teruyoshi Nobukawa and Takanori Nomura
Opt. Express 25(2) 1326-1338 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
    [Crossref]
  2. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
    [Crossref]
  3. G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
    [Crossref]
  4. A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
    [Crossref] [PubMed]
  5. D. A. Gregory, J. C. Kirsch, and E. C. Tam, “Full complex modulation using liquid-crystal televisions,” Appl. Opt. 31(2), 163–165 (1992).
    [Crossref] [PubMed]
  6. S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37(11), 1955–1957 (2012).
    [Crossref] [PubMed]
  7. H. Song, G. Sung, S. Choi, K. Won, H. S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
    [Crossref]
  8. A. Shibukawa, A. Okamoto, M. Takabayashi, and A. Tomita, “Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields,” Opt. Express 22(4), 3968–3982 (2014).
    [Crossref] [PubMed]
  9. Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reméonyi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32(16), 2336–2338 (2007).
    [Crossref] [PubMed]
  10. B. Das, J. Joseph, and K. Singh, “Phase-image-based sparse-gray-level data pages for holographic data storage,” Appl. Opt. 48(28), 5240–5250 (2009).
    [Crossref] [PubMed]
  11. V. Arrizón, “Improved double-phase computer-generated holograms implemented with phase-modulation devices,” Opt. Lett. 27(8), 595–597 (2002).
    [Crossref]
  12. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  13. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45(25), 6374–6380 (2006).
    [Crossref] [PubMed]
  14. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561–3571 (2007).
    [Crossref] [PubMed]
  15. R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
    [Crossref]
  16. Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24(10), 10412–10423 (2016).
    [Crossref] [PubMed]
  17. M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
    [Crossref]
  18. M. Bunsen, S. Umetsu, M. Takabayashi, and A. Okamoto, “Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage,” Jpn. J. Appl. Phys. 52, 09LD04 (2013).
    [Crossref]
  19. T. Nobukawa and T. Nomura, “Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage,” Appl. Opt. 53(17), 3773–3781 (2014).
    [Crossref] [PubMed]
  20. T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
    [Crossref] [PubMed]
  21. J. Carpenter and T. D. Wilkinson, “Graphics processing unit-accelerated hologrpahy by simulated annealing,” Opt. Eng. 49(9), 095801 (2010).
    [Crossref]
  22. T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
    [Crossref] [PubMed]
  23. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [Crossref]
  24. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500–3507 (2007).
    [Crossref]
  25. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
    [Crossref] [PubMed]
  26. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  27. T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18(18), 18975–18980 (2010).
    [Crossref] [PubMed]
  28. M. Imbe and T. Nomura, “Selective calculation for the improvement of reconstructed images in single-exposure generalized phase- shifting digital holography,” Opt. Eng. 53(4), 044102 (2014).
    [Crossref]
  29. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009).
    [Crossref] [PubMed]
  30. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
    [Crossref] [PubMed]
  31. V. Micó and J. García, “Common-path phase-shifting lensless holographic microscopy,” Opt. Lett. 35(23), 3919–3921 (2010).
    [Crossref] [PubMed]
  32. T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
    [Crossref]
  33. Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
    [Crossref]
  34. T. Nobukawa and T. Nomura, “Complex amplitude-modulated data page recording in coaxial holographic data storage with phase-shifting digital holography,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.11.
  35. T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).
    [Crossref]
  36. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref]

2016 (3)

2015 (1)

2014 (4)

2013 (1)

M. Bunsen, S. Umetsu, M. Takabayashi, and A. Okamoto, “Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage,” Jpn. J. Appl. Phys. 52, 09LD04 (2013).
[Crossref]

2012 (2)

2011 (2)

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
[Crossref]

2010 (4)

J. Carpenter and T. D. Wilkinson, “Graphics processing unit-accelerated hologrpahy by simulated annealing,” Opt. Eng. 49(9), 095801 (2010).
[Crossref]

V. Micó and J. García, “Common-path phase-shifting lensless holographic microscopy,” Opt. Lett. 35(23), 3919–3921 (2010).
[Crossref] [PubMed]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18(18), 18975–18980 (2010).
[Crossref] [PubMed]

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
[Crossref]

2009 (4)

2008 (1)

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[Crossref]

2007 (4)

2006 (3)

2005 (1)

2002 (1)

1999 (1)

1992 (1)

1982 (1)

Arrizón, V.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500–3507 (2007).
[Crossref]

V. Arrizón, “Improved double-phase computer-generated holograms implemented with phase-modulation devices,” Opt. Lett. 27(8), 595–597 (2002).
[Crossref]

Ashizuka, Y.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

Aspert, N.

Awatsuji, Y.

Ayres, M.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Berger, G.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[Crossref]

Bunsen, M.

M. Bunsen, S. Umetsu, M. Takabayashi, and A. Okamoto, “Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage,” Jpn. J. Appl. Phys. 52, 09LD04 (2013).
[Crossref]

Campos, J.

Cao, L.

M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
[Crossref]

Carpenter, J.

J. Carpenter and T. D. Wilkinson, “Graphics processing unit-accelerated hologrpahy by simulated annealing,” Opt. Eng. 49(9), 095801 (2010).
[Crossref]

Carrada, R.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500–3507 (2007).
[Crossref]

Charrière, F.

Cheng, C. Y.

Choi, S.

Colomb, T.

Cottrell, D. M.

Curtis, K.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Das, B.

Davis, J. A.

Denz, C.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[Crossref]

Depeursinge, C.

Dhar, L.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Dietz, M.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[Crossref]

Erdei, G.

Fujii, M.

Fujimura, R.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

Fukumoto, A.

Fütterer, G.

García, J.

González, L. A.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500–3507 (2007).
[Crossref]

Göröcs, Z.

Gregory, D. A.

Gu, M.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
[Crossref]

Hara, M.

Häussler, R.

He, M.

M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
[Crossref]

He, Q.

M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
[Crossref]

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Hiramatsu, R.

R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
[Crossref]

Hirooka, K.

Horimai, H.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref]

Hsieh, S. C.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
[Crossref]

Ichimura, S.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

Imbe, M.

M. Imbe and T. Nomura, “Selective calculation for the improvement of reconstructed images in single-exposure generalized phase- shifting digital holography,” Opt. Eng. 53(4), 044102 (2014).
[Crossref]

Ina, H.

Inoue, T.

Ishioka, K.

Ito, K.

Itoh, H.

Jin, G.

M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
[Crossref]

Joseph, J.

Kakue, T.

Kanbayashi, Y.

Kato, H.

Kim, H.

Kirsch, J. C.

Kobayashi, S.

Koppa, P.

Kubota, T.

Kühn, J.

Kunori, K.

Kuroda, K.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

Lee, H. S.

Leister, N.

Li, J.

Li, X.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
[Crossref]

Liu, J.

Lorincz, E.

Marquet, P.

Matoba, O.

R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
[Crossref]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18(18), 18975–18980 (2010).
[Crossref] [PubMed]

Matsumoto, N.

Micó, V.

Moreno, I.

Nishio, K.

Nitta, K.

R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
[Crossref]

Nobukawa, T.

T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).
[Crossref]

T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage,” Appl. Opt. 53(17), 3773–3781 (2014).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Complex amplitude-modulated data page recording in coaxial holographic data storage with phase-shifting digital holography,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.11.

Nomura, T.

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).
[Crossref]

T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
[Crossref] [PubMed]

T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
[Crossref] [PubMed]

M. Imbe and T. Nomura, “Selective calculation for the improvement of reconstructed images in single-exposure generalized phase- shifting digital holography,” Opt. Eng. 53(4), 044102 (2014).
[Crossref]

T. Nobukawa and T. Nomura, “Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage,” Appl. Opt. 53(17), 3773–3781 (2014).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Complex amplitude-modulated data page recording in coaxial holographic data storage with phase-shifting digital holography,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.11.

Okamoto, A.

Reichelt, S.

Reméonyi, J.

Ruiz, U.

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500–3507 (2007).
[Crossref]

Sarkadi, T.

Sato, K.

Shibukawa, A.

Shigaki, M.

R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
[Crossref]

Shimozato, Y.

Shimura, T.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

Singh, K.

Song, H.

Sun, C. C.

Sung, G.

Tahara, T.

Takabayashi, M.

Takeda, M.

Tam, E. C.

Tan, Q.

M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
[Crossref]

Tan, X.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref]

Tanaka, K.

Teng, T. C.

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
[Crossref]

Tokuyama, K.

Tomita, A.

Ujhelyi, F.

Umetsu, S.

M. Bunsen, S. Umetsu, M. Takabayashi, and A. Okamoto, “Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage,” Jpn. J. Appl. Phys. 52, 09LD04 (2013).
[Crossref]

Ura, S.

Usukura, N.

Waldman, D. A.

Wang, Y.

Wani, Y.

Watanabe, K.

Wilkinson, T. D.

J. Carpenter and T. D. Wilkinson, “Graphics processing unit-accelerated hologrpahy by simulated annealing,” Opt. Eng. 49(9), 095801 (2010).
[Crossref]

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Won, K.

Xiao, S.

Xie, J.

Yu, Y. W.

Yzuel, M. J.

Zhang, H.

Appl. Opt. (9)

D. A. Gregory, J. C. Kirsch, and E. C. Tam, “Full complex modulation using liquid-crystal televisions,” Appl. Opt. 31(2), 163–165 (1992).
[Crossref] [PubMed]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref] [PubMed]

J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45(25), 6374–6380 (2006).
[Crossref] [PubMed]

P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561–3571 (2007).
[Crossref] [PubMed]

B. Das, J. Joseph, and K. Singh, “Phase-image-based sparse-gray-level data pages for holographic data storage,” Appl. Opt. 48(28), 5240–5250 (2009).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage,” Appl. Opt. 53(17), 3773–3781 (2014).
[Crossref] [PubMed]

T. Nobukawa and T. Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55(10), 2565–2573 (2016).
[Crossref] [PubMed]

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

M. He, L. Cao, Q. Tan, Q. He, and G. Jin, “Novel phase detection method for a holographic data storage system using two interferograms,” J. Opt. A: Pure Appl. Opt. 11, 065705 (2009).
[Crossref]

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A: Pure Appl. Opt. 10, 115305 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (1)

V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A. 24(11), 3500–3507 (2007).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Bunsen, S. Umetsu, M. Takabayashi, and A. Okamoto, “Method of phase and amplitude modulation/demodulation using datapages with embedded phase-shift for holographic data storage,” Jpn. J. Appl. Phys. 52, 09LD04 (2013).
[Crossref]

R. Hiramatsu, M. Shigaki, K. Nitta, and O. Matoba, “Multiresolution coding using amplitude and phase modulations for holographic data storage,” Jpn. J. Appl. Phys. 50, 09ME04 (2011).
[Crossref]

Light: Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
[Crossref]

Opt. Commun. (1)

Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Opt. Commun. 283(20), 3895–3900 (2010).
[Crossref]

Opt. Eng. (2)

M. Imbe and T. Nomura, “Selective calculation for the improvement of reconstructed images in single-exposure generalized phase- shifting digital holography,” Opt. Eng. 53(4), 044102 (2014).
[Crossref]

J. Carpenter and T. D. Wilkinson, “Graphics processing unit-accelerated hologrpahy by simulated annealing,” Opt. Eng. 49(9), 095801 (2010).
[Crossref]

Opt. Express (8)

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007).
[Crossref] [PubMed]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18(18), 18975–18980 (2010).
[Crossref] [PubMed]

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[Crossref] [PubMed]

A. Okamoto, K. Kunori, M. Takabayashi, A. Tomita, and K. Sato, “Holographic diversity interferometry for optical storage,” Opt. Express 19(14), 13436–13444 (2011).
[Crossref] [PubMed]

H. Song, G. Sung, S. Choi, K. Won, H. S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
[Crossref]

A. Shibukawa, A. Okamoto, M. Takabayashi, and A. Tomita, “Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields,” Opt. Express 22(4), 3968–3982 (2014).
[Crossref] [PubMed]

Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24(10), 10412–10423 (2016).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (2)

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[Crossref]

T. Nobukawa and T. Nomura, “Holographic storage system based on digital holography for recording a phase data page in a compact optical setup,” Proc. SPIE 9771, 97710E (2016).
[Crossref]

Other (2)

T. Nobukawa and T. Nomura, “Complex amplitude-modulated data page recording in coaxial holographic data storage with phase-shifting digital holography,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTu4A.11.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Recording process in a holographic data storage system using digital holography.
Fig. 2
Fig. 2 Encoded phase pattern for generating a signal beam.
Fig. 3
Fig. 3 Phase distribution on a phase-only SLM: (a) computer-generated reference pattern and (b) encoded phase pattern. (c) Fourier power spectrum of (a). (d) Fourier power spectrum of (b).
Fig. 4
Fig. 4 Retrieving process in a holographic data storage system using digital holography.
Fig. 5
Fig. 5 Phase-shifted beam. (a) Linear phase pattern for generating a phase shifted beam. (b) Fourier power spectrum of (a).
Fig. 6
Fig. 6 Experimental setup for demonstrating a holographic data storage system using digital holography.
Fig. 7
Fig. 7 Complex amplitude data page: (a) amplitude data page and (b) phase data page. (c) Digital random phase mask.
Fig. 8
Fig. 8 Experimental result and retrieving process of a complex amplitude data page. (a) Digital hologram. (b) Detected complex amplitude distribution of a signal beam from (a). (c) Complex amplitude values of the signal beam of (b) on a complex plane. (d) Complex amplitude values of the retrieved complex amplitude data page without a digital random phase mask.
Fig. 9
Fig. 9 Complex amplitude data pages for shift multiplexing: (a) data page 1 and (b) data page 2.
Fig. 10
Fig. 10 Shift selectivity and typical reconstructed intensity images of data page 1.
Fig. 11
Fig. 11 Experimental results of shift multiplexing. The complex amplitude distribution of detected signal beams of (a) data page 1 and (b) data page 2. Retrieved complex amplitude values without a digital random phase mask of (c) data page 1 and (b) data page 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y ) = θ ( a d ) [ ϕ d ( x , y ) + ϕ linear 1 ( x , y ) + ϕ rand ( x , y ) + π { 1 θ ( a d ) } ] ,
sin [ π { 1 θ ( a d ) } ] π { 1 θ ( a d ) } = a d .

Metrics