Abstract

In this paper, we propose employing a 682 nm vertical-cavity surface-emitting laser (VCSEL) with 1 GHz bandwidth for high-speed and power-sharing wireless visible light communication (VLC) in the different transmission distances of 2 to 5 m. In the measurement, the data rate of 0.52 to 11.86 Gbit/s (0.44 to 10.8 Gbit/s in a net data rate) can be achieved by using spectral-efficient orthogonal frequency division multiplexing (OFDM) modulation with bit-loading algorithm. Therefore, 4- to 256-quadrature amplitude modulations (QAMs) are employed simultaneously in the modulation bandwidth for VCSEL-based VLC. The proposed power-sharing VLC system can be divided to four end-users, when three beam splitters (BSs) are used simultaneously. Moreover, all of the measured bit error rates (BERs) are below the forward error correction (FEC) threshold (BER = 3.8 × 10−3).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver

Xingxing Huang, Zhixin Wang, Jianyang Shi, Yiguang Wang, and Nan Chi
Opt. Express 23(17) 22034-22042 (2015)

4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

Hassan M. Oubei, Jose R. Duran, Bilal Janjua, Huai-Yung Wang, Cheng-Ting Tsai, Yu-Cheih Chi, Tien Khee Ng, Hao-Chung Kuo, Jr-Hau He, Mohamed-Slim Alouini, Gong-Ru Lin, and Boon S. Ooi
Opt. Express 23(18) 23302-23309 (2015)

TO-56-can packaged colorless WRC-FPLD for QAM OFDM transmission at 42 Gbit/s over 25-km SMF

Min-Chi Cheng, Yu-Chieh Chi, Cheng-Ting Tsai, Chung-Yu Lin, and Gong-Ru Lin
Opt. Express 23(17) 22676-22690 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
    [Crossref]
  2. C.-H. Yeh, H.-Y. Chen, C.-W. Chow, and Y.-L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
    [Crossref] [PubMed]
  3. Y. Wang, C. Yang, Y. Wang, and N. Chi, “Gigabit polarization division multiplexing in visible light communication,” Opt. Lett. 39(7), 1823–1826 (2014).
    [Crossref] [PubMed]
  4. C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu, “Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance,” Opt. Express 22(8), 9783–9788 (2014).
    [Crossref] [PubMed]
  5. Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system,” Proc. OFC, 2013, Paper OTh1G.3.
    [Crossref]
  6. C.-W. Chow, C.-H. Yeh, J.-Y. Sung, and C.-W. Hsu, “Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal,” Opt. Express 22(25), 30719–30724 (2014).
    [Crossref] [PubMed]
  7. C. Kottke, J. Hilt, K. Habel, J. Vučić, and K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” Proc. ECOC, 2012, Paper We.3.B.4.
    [Crossref]
  8. J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
    [Crossref]
  9. C.-L. Ying, H.-H. Lu, C.-Y. Li, C.-J. Cheng, P.-C. Peng, and W.-J. Ho, “20-Gbps optical LiFi transport system,” Opt. Lett. 40(14), 3276–3279 (2015).
    [Crossref] [PubMed]
  10. H.-H. Lu, C.-Y. Li, C.-A. Chu, T.-C. Lu, B.-R. Chen, C.-J. Wu, and D.-H. Lin, “10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter,” Opt. Lett. 40(19), 4563–4566 (2015).
    [Crossref] [PubMed]
  11. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  12. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref] [PubMed]
  13. Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  14. W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
    [Crossref]
  15. ITU-T Recommendation G.975.1, Appendix I.9 (2004)
  16. C.-H. Chang, C.-Y. Li, H.-H. Lu, C.-Y. Lin, J.-H. Chen, Z.-W. Wan, and C.-J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4121–4127 (2016).
  17. I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
    [Crossref]

2016 (4)

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
[Crossref]

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
[Crossref]

C.-H. Chang, C.-Y. Li, H.-H. Lu, C.-Y. Lin, J.-H. Chen, Z.-W. Wan, and C.-J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32(24), 4121–4127 (2016).

2015 (6)

2014 (3)

2008 (1)

Chang, C.-H.

Chen, B.-R.

Chen, H. Y.

Chen, H.-Y.

Chen, J.

Chen, J.-H.

Cheng, C.-J.

Chi, N.

Chi, Y.-C.

Chow, C. W.

Chow, C.-W.

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
[Crossref]

I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
[Crossref]

C.-H. Yeh, H.-Y. Chen, C.-W. Chow, and Y.-L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
[Crossref] [PubMed]

J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
[Crossref]

C.-W. Chow, C.-H. Yeh, J.-Y. Sung, and C.-W. Hsu, “Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal,” Opt. Express 22(25), 30719–30724 (2014).
[Crossref] [PubMed]

Chu, C.-A.

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

H.-H. Lu, C.-Y. Li, C.-A. Chu, T.-C. Lu, B.-R. Chen, C.-J. Wu, and D.-H. Lin, “10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter,” Opt. Lett. 40(19), 4563–4566 (2015).
[Crossref] [PubMed]

Durán Retamal, J. R.

Hanson, F.

He, J.-H.

Ho, W.-J.

Hsieh, D.-H.

Hsu, C.-W.

Hsu, D.-Z.

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
[Crossref]

I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
[Crossref]

Janjua, B.

Kuo, H.-C.

Li, C.-Y.

Liao, C.-H.

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

Lin, C.-Y.

Lin, D.-H.

Lin, G.-R.

Lin, W.-F.

J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
[Crossref]

Liu, Y.

J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
[Crossref]

Liu, Y. L.

Liu, Y.-L.

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
[Crossref]

C.-H. Yeh, H.-Y. Chen, C.-W. Chow, and Y.-L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
[Crossref] [PubMed]

Lu, H.-H.

Lu, I.-C.

I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
[Crossref]

Lu, T.-C.

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

H.-H. Lu, C.-Y. Li, C.-A. Chu, T.-C. Lu, B.-R. Chen, C.-J. Wu, and D.-H. Lin, “10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter,” Opt. Lett. 40(19), 4563–4566 (2015).
[Crossref] [PubMed]

Ng, T. K.

Ooi, B. S.

Oubei, H. M.

Peng, P.-C.

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

C.-L. Ying, H.-H. Lu, C.-Y. Li, C.-J. Cheng, P.-C. Peng, and W.-J. Ho, “20-Gbps optical LiFi transport system,” Opt. Lett. 40(14), 3276–3279 (2015).
[Crossref] [PubMed]

Radic, S.

Sung, J.-Y.

J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
[Crossref]

C.-W. Chow, C.-H. Yeh, J.-Y. Sung, and C.-W. Hsu, “Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal,” Opt. Express 22(25), 30719–30724 (2014).
[Crossref] [PubMed]

Tsai, C.-T.

Tsai, W.-S.

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

Wan, Z.-W.

Wang, H.-Y.

Wang, Y.

Wu, C.-J.

Yang, C.

Yeh, C. H.

Yeh, C.-H.

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
[Crossref]

I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
[Crossref]

C.-H. Yeh, H.-Y. Chen, C.-W. Chow, and Y.-L. Liu, “Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC,” Opt. Express 23(2), 1133–1138 (2015).
[Crossref] [PubMed]

J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
[Crossref]

C.-W. Chow, C.-H. Yeh, J.-Y. Sung, and C.-W. Hsu, “Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal,” Opt. Express 22(25), 30719–30724 (2014).
[Crossref] [PubMed]

Ying, C.-L.

Appl. Opt. (1)

IEEE Photonics J. (2)

W.-S. Tsai, H.-H. Lu, C.-Y. Li, T.-C. Lu, C.-H. Liao, C.-A. Chu, and P.-C. Peng, “A 50-m/40 Gb/s 680-nm VCSEL-based FSO communication,” IEEE Photonics J. 8(2), 7903008 (2016).
[Crossref]

I.-C. Lu, C.-H. Yeh, D.-Z. Hsu, and C.-W. Chow, “Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication,” IEEE Photonics J. 8(3), 7904106 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, Y.-L. Liu, and D.-Z. Hsu, “Investigation of phosphor-LED lamp for real-time half-duplex wireless VLC system,” J. Opt. 18(6), 065701 (2016).
[Crossref]

Opt. Commun. (1)

J.-Y. Sung, C.-H. Yeh, C.-W. Chow, W.-F. Lin, and Y. Liu, “Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system,” Opt. Commun. 355, 261–268 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (3)

ITU-T Recommendation G.975.1, Appendix I.9 (2004)

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s asynchronous bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system,” Proc. OFC, 2013, Paper OTh1G.3.
[Crossref]

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K. D. Langer, ”1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” Proc. ECOC, 2012, Paper We.3.B.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experiment setup of proposed power-sharing VCSEL-based wireless VLC system. (b) L-I characteristics of 682 nm VCSEL.
Fig. 2
Fig. 2 Block diagrams of OFDM (a) modulation and (b) demodulation.
Fig. 3
Fig. 3 (a) Measured SNR and (b) determined bit number versus frequency, when the proposed power-sharing VLC is without and with 1, 2 and 3 BSs respectively, in a transmission distance of 2 m.
Fig. 4
Fig. 4 (a) Measured SNR and (b) obtained bit number versus frequency, when the proposed power-sharing VLC is without and with 1, 2 and 3 BSs respectively, in a transmission distance of 5 m.
Fig. 5
Fig. 5 Measured corresponding constellations of OFDM signal under a 2 m transmission distance (a) without and (b) with three BSs. Measured corresponding constellations of OFDM signal under a 5 m transmission distance (c) without and (d) with three BSs.
Fig. 6
Fig. 6 Corresponding (a) data rate and (b) BER of proposed VCSEL-based VLC system using OFDM modulation with bit-loading algorithm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR norm = [ erfc 1 ( 2 BER target 4 ) 2 ] 2 3 > SNR M1 ,
b= n=1 N log 2 ( M )= n=1 N log 2 ( 1+ P n SNR n SNR norm ) ,

Metrics