Abstract

A capillary light guide optical amplifier using nanocolloids of Yb3+-Er3+ co-doped NaYF4 as a filler was successfully demonstrated. A 7-cm-long and 150-micron-inner-diameter capillary light guide was capable to amplify a pulsed optical signal at 1550 nm with a gain coefficient of 0.15 cm−1 at a pump power of 4 mW (980-nm wavelength). The nanocolloid gain medium was prepared by pulverizing the phosphor powder with a high-speed planetary ball mill. Ball milling of the powder in water produced nanoparticles with a size of approximately 130 nm that after drying were transferred to a liquid with high refractive index (1.551 at 1550 nm) required to maintain light confinement within the fused silica capillary light guide. The results show that RE-doped colloids of nanocrystals can be potentially used as liquid gain media fillers in capillary light guide lasers and amplifiers with high photostability and low toxicity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes

Xiaofeng Liu, Yingzhi Chi, Guoping Dong, E Wu, Yanbo Qiao, Heping Zeng, and Jianrong Qiu
Opt. Express 17(7) 5885-5890 (2009)

NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

Effect of EDTA on the formation and upconversion of NaYF4:Yb3+/ Er3+

Ruisen Zhou and Xia Li
Opt. Mater. Express 6(4) 1313-1320 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
    [Crossref]
  2. X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
    [Crossref] [PubMed]
  3. W. G. J. H. M. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. I. Schropp, “Solar spectrum conversion for photovoltaics using nanoparticles,” http://cdn.intechopen.com/pdfs-wm/32588.pdf .
  4. D. Zhang, “Covert infrared battlefield combat taggants,” Aerospace and Defense Technology, April, 10–15 (2014).
  5. M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
    [Crossref] [PubMed]
  6. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
    [Crossref] [PubMed]
  7. J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
    [Crossref] [PubMed]
  8. G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
    [Crossref]
  9. Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
    [Crossref] [PubMed]
  10. J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
    [Crossref] [PubMed]
  11. S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, “Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions,” Nanoscale Res. Lett. 6(1), 539 (2011).
    [Crossref] [PubMed]
  12. L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
    [Crossref] [PubMed]
  13. Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
    [Crossref]
  14. J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref] [PubMed]
  15. D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
    [Crossref]
  16. N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb,Er – an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
    [Crossref]
  17. D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
    [Crossref]
  18. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
    [Crossref]
  19. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1997).
  20. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [Crossref]
  21. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815 (2002).
    [Crossref]
  22. M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
    [Crossref]
  23. J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
    [Crossref]
  24. J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
    [Crossref] [PubMed]
  25. H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
    [Crossref] [PubMed]
  26. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
    [Crossref]

2015 (1)

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

2014 (2)

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

2013 (2)

S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
[Crossref]

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

2011 (2)

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, “Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions,” Nanoscale Res. Lett. 6(1), 539 (2011).
[Crossref] [PubMed]

2010 (3)

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

2009 (2)

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

X. Liu, Y. Chi, G. Dong, E. Wu, Y. Qiao, H. Zeng, and J. Qiu, “Optical gain at 1550 nm from colloidal solution of Er3+-Yb3+ codoped NaYF4 nanocubes,” Opt. Express 17(7), 5885–5890 (2009).
[Crossref] [PubMed]

2008 (1)

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

2006 (2)

J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

2005 (1)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref] [PubMed]

2004 (2)

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

2002 (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815 (2002).
[Crossref]

2001 (1)

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

1991 (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

1988 (1)

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

1972 (1)

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb,Er – an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Andersen, P. E.

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

Andersson-Engels, S.

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

Boyer, J.-Ch.

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Capobianco, J. A.

J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Chen, D.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

Chen, J.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Chi, Y.

Chow, G. M.

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Cuccia, L. A.

J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Dai, R.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Deng, Y.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Ding, Z.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Dong, G.

Duan, Z.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Dumlupinar, G.

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

Dwight, K.

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb,Er – an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Ehrt, D.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Fang, X.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Feng, J.

S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
[Crossref]

Fermann, M. E.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

Ge, Y.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

Green, L.

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Guo, C.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Guo, L.-H.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

Hanna, D. C.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

He, N.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Hong, Y.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Huang, L.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Huang, Y.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Jensen, O. B.

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

Jessup, M.

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Jia, N.-Q.

S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, “Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions,” Nanoscale Res. Lett. 6(1), 539 (2011).
[Crossref] [PubMed]

Jiang, Z.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

King, N.

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Kong, X.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Kumar, G. A.

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

Li, J.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Li, S.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Li, Y.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref] [PubMed]

Lin, M.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Liu, H.

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

Liu, X.

Lu, H.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

Lu, Z.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Mao, C.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Menyuk, N.

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb,Er – an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Mi, C.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

Patel, D.

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref] [PubMed]

Philipps, J. F.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Pierce, J. W.

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb,Er – an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

Qiao, Y.

Qiu, J.

Riman, R. E.

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

Sarkisov, S.

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Sauerbrey, R.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Shan, S.-N.

S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, “Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions,” Nanoscale Res. Lett. 6(1), 539 (2011).
[Crossref] [PubMed]

Shepherd, D. P.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

Song, S.

S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
[Crossref]

Sui, Z.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Sun, Y.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Suni, P. J.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

Tan, M. C.

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

Tanabe, S.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815 (2002).
[Crossref]

Tian, L.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Topfer, T.

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Townsend, J. E.

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

Tu, L.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

van Veggel, F. C. J. M.

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Vance, C.

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

Vetrone, F.

J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Wang, L.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Wang, M.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Wang, Q.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

Wang, S.

S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
[Crossref]

Wang, X.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref] [PubMed]

Wang, X.-Y.

S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, “Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions,” Nanoscale Res. Lett. 6(1), 539 (2011).
[Crossref] [PubMed]

Wang, Y.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Wang, Z.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Wu, E.

Xia, K.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Xu, C. T.

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

Xu, F.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Xu, S.

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

Yang, W.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

Ye, Y.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Yi, G.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

Yi, G. S.

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

You, M.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Yuan, D.

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

Zeng, H.

Zhang, C.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Zhang, H.

S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
[Crossref]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Zhang, Z.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Zhao, J.

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

Zhao, S.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

Zhong, J.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Zhu, Z.

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref] [PubMed]

Zhuo, R.

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Appl. Phys. B (1)

J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B 72(4), 399–405 (2001).
[Crossref]

Appl. Phys. Lett. (1)

N. Menyuk, K. Dwight, and J. W. Pierce, “NaYF4:Yb,Er – an efficient upconversion phosphor,” Appl. Phys. Lett. 21(4), 159–161 (1972).
[Crossref]

C. R. Chim. (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815 (2002).
[Crossref]

CrystEngComm (1)

S. Wang, J. Feng, S. Song, and H. Zhang, “Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging,” CrystEngComm 15(36), 7142–7151 (2013).
[Crossref]

Electron. Lett. (1)

M. E. Fermann, D. C. Hanna, D. P. Shepherd, P. J. Suni, and J. E. Townsend, “Efficient operation of an Yb-sensitized Er fibre laser at 1.56 μm,” Electron. Lett. 24(18), 1135–1136 (1988).
[Crossref]

J. Am. Chem. Soc. (1)

J.-Ch. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

J. Mater. Chem. (1)

J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, and S. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem. 21(8), 2632–2638 (2011).
[Crossref] [PubMed]

J. Mater. Res. (1)

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

J. Nanosci. Nanotechnol. (2)

L. Zhang, Z. Wang, Z. Lu, K. Xia, Y. Deng, S. Li, C. Zhang, Y. Huang, and N. He, “Synthesis of LiYF4:Yb, Er upconversion nanoparticles and its fluorescence properties,” J. Nanosci. Nanotechnol. 14(6), 4710–4713 (2014).
[Crossref] [PubMed]

Q. Wang, M. C. Tan, R. Zhuo, G. A. Kumar, and R. E. Riman, “A solvothermal route to size- and phase-controlled highly luminescent NaYF4:Yb,Er up-conversion nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1685–1692 (2010).
[Crossref] [PubMed]

J. Nonlinear Opt. Phys. Mater. (1)

D. Patel, C. Vance, N. King, M. Jessup, L. Green, and S. Sarkisov, “Strong visible upconversion in rare earth ion-doped NaYF4 crystals,” J. Nonlinear Opt. Phys. Mater. 19(2), 295–301 (2010).
[Crossref]

J. Phys. Chem. B (1)

J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H. Zhang, “Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level,” J. Phys. Chem. B 112(49), 15666–15672 (2008).
[Crossref] [PubMed]

J. Rare Earths (1)

Y. Ye, Z. Jiang, Q. Wang, Z. Zhu, X. Wang, Z. Sui, R. Dai, Z. Wang, Z. Zhang, and Z. Ding, “Upconversion luminescence of NaYF4:Yb,Er nanocrystals with high uniformity,” J. Rare Earths 32(9), 802–805 (2014).
[Crossref]

Nano Lett. (2)

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infra-red-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[Crossref]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystallite NaYF4:Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2196 (2004).
[Crossref]

Nanoscale (3)

H. Liu, C. T. Xu, G. Dumlupinar, O. B. Jensen, P. E. Andersen, and S. Andersson-Engels, “Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power,” Nanoscale 5(20), 10034–10040 (2013).
[Crossref] [PubMed]

J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

S.-N. Shan, X.-Y. Wang, and N.-Q. Jia, “Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions,” Nanoscale Res. Lett. 6(1), 539 (2011).
[Crossref] [PubMed]

Nature (1)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Other (3)

W. G. J. H. M. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. I. Schropp, “Solar spectrum conversion for photovoltaics using nanoparticles,” http://cdn.intechopen.com/pdfs-wm/32588.pdf .

D. Zhang, “Covert infrared battlefield combat taggants,” Aerospace and Defense Technology, April, 10–15 (2014).

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Energy diagrams describing energy transfer during the downshifting (a) and upconversion (b) emissions in NaYF4: Yb3+, Er3+ pumped with a 980-nm laser diode.
Fig. 2
Fig. 2 S XRD spectrum of the synthesized powder of NaYF4: Yb3+, Er3+ at various baking temperatures. 1 – the reference XRD spectrum (calculated line pattern – JCPDS card No. 77-2042) of NaYF4 α –phase (cubic); 2 – XRD spectrum of the synthesized powder of NaYF4: Yb3+, Er3+ without baking; 3 - XRD spectrum of the synthesized powder of NaYF4: Yb3+, Er3+ baked for 1 hour at 300°C; 4 - 400 °C; 5 - 500 °C; 6 - 600 °C; 7 - 700 °C; 8 - 800 °C; 9 – the reference XRD spectrum (calculated line pattern – JCPDS card No. 28-1192) of NaYF4 β –phase (hexagonal).
Fig. 3
Fig. 3 Optical emission from the powder of NaYF4: Yb3+, Er3+ (excited with a 980-nm laser diode) versus the baking temperature: (a) downshifting emission spectra; (b) downshifting emission intensity at the 1533-nm spectral peak versus the baking temperature; (c) upconversion emission spectra; (d) emission intensity at the 540-nm (green) and 656-nm (red) spectral peaks versus the baking temperature.
Fig. 4
Fig. 4 Size of the ball-milled nanoparticles of NaYF4: Yb3+, Er3+, and their X-ray diffraction properties. (a) Size distribution of the nanocolloid in CCl4 obtained using the dynamic light scattering (DLS) measurement (Zetasizer 90). Solid and dashed lines correspond to two sets of measurement data. (b) AFM image of the nanoparticles dispersed on a mica substrate. (c) Histogram of the size (average diameter) distribution of the nanoparticles obtained from the AFM image analysis. (d) XRD spectrum of the ball milled nanopowder of NaYF4: Yb3+, Er3+. The arrows and associated indices mark the positions of the calculated diffraction peaks of the computed line pattern of NaYF4 hexagonal β –phase (JCPDS card No. 77-2042) also presented in Fig. 2.
Fig. 5
Fig. 5 Optical emission from the ball-milled nanocolloid: (a) Photograph (taken with the digital camera of iPhone 6) of a 10-mm-thick fluoroscopic cuvette with the nanocolloid of NaYF4: Yb3+, Er3+ in CCl4 prepared by ball milling. The streak of visible light inside the cuvette is the upconversion emission generated by a 980-nm laser beam propagating from the right to the left through the cuvette. (b) Spectrum of downshifting emission of the nanocolloid of NaYF4:Yb3+, Er3+ in CCl4. (c) Spectrum of upconversion emission of the nanocolloid.
Fig. 6
Fig. 6 Block-diagram of the experimental setup to investigate the nanocolloid-filled capillary optical light guide amplifier.
Fig. 7
Fig. 7 Nanocolloid-filled capillary optical light guide amplifier: (a) The photo of the amplifier with the pump radiation injected from the left. The bright visible light is the upconversion radiation from by the nanocolloid. (b) Oscillogram of the input pulsed signal (1550-nm wavelength, 0.04-mW amplitude) after passing the amplifier with the pump off (black graph 1) and the 4.2-mW pump (blue graph 2). (c) The gain versus the pump power. The amplitude of the input pulsed signal is 0.04 mW. (d) The gain versus the amplitude of the input pulsed signal at 4.2-mW (blue circles) and 18.0-mW (black triangles) pump.

Metrics