Abstract

The fast and computationally inexpensive Modified Transfer Matrix Method (MTM) is employed to simulate the optical response of kesterite Cu2ZnSnSe4 solar cells. This method can partially take into account the scattering effects due to roughness at the interfaces between the layers of the stack. We analyzed the optical behavior of the whole cell structure by varying the thickness of the TCO layer (iZnO + ITO) between 50 and 1200 nm and the buffer CdS layer between 0 and 100 nm. We propose optimal combinations of the TCO/CdS thicknesses that can locally maximize the device photocurrent. We provide experimental data that qualitatively confirm our theoretical predictions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical study of back-contacted CIGS solar cells

Nasim Rezaei, Olindo Isabella, Paul Procel, Zeger Vroon, and Miro Zeman
Opt. Express 27(8) A269-A279 (2019)

Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells

Chidozie Onwudinanti, Robin Vismara, Olindo Isabella, Louis Grenet, Fabrice Emieux, and Miro Zeman
Opt. Express 24(6) A693-A707 (2016)

Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study

Nasim Rezaei, Olindo Isabella, Zeger Vroon, and Miro Zeman
Opt. Express 26(2) A39-A53 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Maraun and A. Yamiya, “Solar Frontier achieves world record thin-film solar cell efficiency: 22.3%,” (Solar Frontier, 2015), http://www.solar-frontier.com/eng/news/2015/C051171.html .
  2. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
    [Crossref]
  3. Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), n/a–n/a (2015).
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
    [Crossref]
  5. M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
    [Crossref]
  6. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
    [Crossref]
  7. J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
    [Crossref]
  8. I. Luck, “Competitiveness of CIGS technology in the light of recent PV developments – part 1: The state of the art in CIGS production,” Photovoltaics Int. 24, 69–72 (2014).
  9. M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
    [Crossref]
  10. F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
    [Crossref]
  11. D. Cozza, “Modeling and physical studies of kesterite solar cells,” PhD dissertation, Aix Marseille University, (2016).
  12. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
    [Crossref]
  13. M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361, 527–532 (2000).
    [Crossref]
  14. Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
    [Crossref]
  15. M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
    [Crossref]
  16. C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
    [Crossref]
  17. Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
    [Crossref]
  18. Optical Data from Sopra SA, “Molybdenum optical constants,” http://www.sspectra.com/sopra.html .
  19. M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
    [Crossref]
  20. S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).
  21. M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
    [Crossref]
  22. G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
    [Crossref]
  23. J. M. Bernhard, “Work function study of Iridium Oxide and Molybdenum using UPS and simultaneous Fowler-Norheim I-V plots with field emission energy distributions,” PhD dissertation. University of North Texas, p. 140, (1999).
  24. G. Yin, C. Merschjann, and M. Schmid, “The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films,” J. Appl. Phys. 113(21), 213510 (2013).
    [Crossref]
  25. S. Byrnes, “Multilayer optical calculations,” (Cornell University Library, 2016), arXiv:1603.02720.
  26. K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials (Basel) 4(1), 87–128 (2014).
    [Crossref]
  27. S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).
  28. D. Raoufi and F. Hosseinpanahi, “Surface morphology dynamics in ITO thin films,” J. Mod. Phys. 03(08), 645–651 (2012).
    [Crossref]
  29. K. Nanda, S. Sarangi, and S. Sahu, “Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4), 293–297 (1998).
    [Crossref]
  30. Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
    [Crossref]

2016 (1)

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

2015 (4)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

2014 (4)

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials (Basel) 4(1), 87–128 (2014).
[Crossref]

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

I. Luck, “Competitiveness of CIGS technology in the light of recent PV developments – part 1: The state of the art in CIGS production,” Photovoltaics Int. 24, 69–72 (2014).

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

2013 (4)

G. Yin, C. Merschjann, and M. Schmid, “The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films,” J. Appl. Phys. 113(21), 213510 (2013).
[Crossref]

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

2012 (3)

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

D. Raoufi and F. Hosseinpanahi, “Surface morphology dynamics in ITO thin films,” J. Mod. Phys. 03(08), 645–651 (2012).
[Crossref]

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

2010 (2)

C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
[Crossref]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

2009 (2)

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

2000 (1)

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361, 527–532 (2000).
[Crossref]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

1998 (1)

K. Nanda, S. Sarangi, and S. Sahu, “Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4), 293–297 (1998).
[Crossref]

Abbas, A.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Alexander, N. J.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Andersson, M. R.

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

Avellán-Hampe, A.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Ballif, C.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Bass, K.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Benoy, M. D.

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

Bertram, T.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Binu, P. J.

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

Burgelman, M.

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361, 527–532 (2000).
[Crossref]

Chang, C.-H.

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials (Basel) 4(1), 87–128 (2014).
[Crossref]

Claudio, G.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Colina, M.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Conibeer, G.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Contreras, M.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Cui, H.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Dalibor, T.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

De Wolf, S.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Degrave, S.

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361, 527–532 (2000).
[Crossref]

DeHart, C.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Demircioglu, Ö.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Descoeudres, A.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Efstathiadis, H.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Eraerds, P.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Fairbrother, A.

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Feng, Y.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Filipic, M.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Finger, A.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Giraldo, S.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Glynn, S.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Green, M.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Gunawan, O.

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

Gütay, L.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Haass, S.

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Haldar, P.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Han, K.

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials (Basel) 4(1), 87–128 (2014).
[Crossref]

Hao, X.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Harvey, J. L.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Heo, J.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Holman, Z.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Hosseinpanahi, F.

D. Raoufi and F. Hosseinpanahi, “Surface morphology dynamics in ITO thin films,” J. Mod. Phys. 03(08), 645–651 (2012).
[Crossref]

Hovel, H. J.

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

Huh, M. S.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Hwang, C. S.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Inganas, O.

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Ishizuka, S.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Izquierdo-Roca, V.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Jeong, J. K.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Kaminski, P. M.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Keller, J.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Kim, H. J.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Kushiya, K.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Lee, C.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Leifer, K.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Li, J.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Lisco, F.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Liu, F.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Liu, X.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

Lopez-Marino, S.

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

López-Marino, S.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Losurdo, M.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Luck, I.

I. Luck, “Competitiveness of CIGS technology in the light of recent PV developments – part 1: The state of the art in CIGS production,” Photovoltaics Int. 24, 69–72 (2014).

Ma, Z.

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

Maniscalco, B.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Mann, J.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Matsubara, K.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Merschjann, C.

G. Yin, C. Merschjann, and M. Schmid, “The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films,” J. Appl. Phys. 113(21), 213510 (2013).
[Crossref]

Mitzi, D. B.

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

Mohammed, E. M.

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

Mousel, M.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Nanda, K.

K. Nanda, S. Sarangi, and S. Sahu, “Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4), 293–297 (1998).
[Crossref]

Neuschitzer, M.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Niki, S.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Nollet, P.

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361, 527–532 (2000).
[Crossref]

Noufi, R.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Parisi, J.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Perez-Rodriguez, A.

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Pérez-Rodríguez, A.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Persson, C.

C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
[Crossref]

Pethuraja, G. G.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Pistor, P.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Placidi, M.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Powalla, M.

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Pradeep, B.

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

Ramanathan, K.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

Raoufi, D.

D. Raoufi and F. Hosseinpanahi, “Surface morphology dynamics in ITO thin films,” J. Mod. Phys. 03(08), 645–651 (2012).
[Crossref]

Redinger, A.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Regesch, D.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Repins, I.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

Rey, G.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Richter, M.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Riedel, I.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Sahu, S.

K. Nanda, S. Sarangi, and S. Sahu, “Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4), 293–297 (1998).
[Crossref]

Sanchez, Y.

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Sánchez, Y.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Sarangi, S.

K. Nanda, S. Sarangi, and S. Sahu, “Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4), 293–297 (1998).
[Crossref]

Saucedo, E.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Schmid, M.

G. Yin, C. Merschjann, and M. Schmid, “The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films,” J. Appl. Phys. 113(21), 213510 (2013).
[Crossref]

Schubbert, C.

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Sendler, J.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Siebentritt, S.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Smole, F.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Song, J.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Sood, A. K.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Suresh Babu, M.

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

Tang, Z.

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

Thersleff, T.

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Todorov, T. K.

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

Topic, M.

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

Walls, J. M.

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Wang, E.

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

Wang, W.

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

Weiss, T.

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

Weiss, T. P.

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

Welser, R. E.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Winkler, M.

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

Won, S.-J.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Xie, H.

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Yang, B. S.

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

Yin, G.

G. Yin, C. Merschjann, and M. Schmid, “The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films,” J. Appl. Phys. 113(21), 213510 (2013).
[Crossref]

Zhang, F.

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

Adv. Energy Mater. (1)

S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, K. Leifer, A. Pérez-Rodríguez, and E. Saucedo, “Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer,” Adv. Energy Mater. 5(21), 1501070 (2015).

Adv. Mater. Phys. Chem. (1)

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59–62 (2012).
[Crossref]

Appl. Surf. Sci. (1)

K. Nanda, S. Sarangi, and S. Sahu, “Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films,” Appl. Surf. Sci. 133(4), 293–297 (1998).
[Crossref]

Braz. J. Phys. (1)

M. D. Benoy, E. M. Mohammed, M. Suresh Babu, P. J. Binu, and B. Pradeep, “Thickness dependence of the properties of Indium Tin Oxide (ITO) films prepared by activated reactive evaporation,” Braz. J. Phys. 39(4), 629–632 (2009).
[Crossref]

Energy Environ. Sci. (1)

M. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, “Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells,” Energy Environ. Sci. 7(3), 1029–1036 (2014).
[Crossref]

IEEE J. Photovoltaics (1)

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovoltaics 3(1), 472–475 (2013).
[Crossref]

J. Appl. Phys. (5)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Z. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, and C. Ballif, “Infrared light management in high-efficiency Silicon heterojunction and rear-passivated solar cells,” J. Appl. Phys. 113(1), 013107 (2013).
[Crossref]

C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys. 107(5), 053710 (2010).
[Crossref]

Ö. Demircioğlu, M. Mousel, A. Redinger, G. Rey, T. Weiss, S. Siebentritt, I. Riedel, and L. Gütay, “Detection of a MoSe2 secondary phase layer in CZTSe by spectroscopic ellipsometry,” J. Appl. Phys. 118(18), 185302 (2015).
[Crossref]

G. Yin, C. Merschjann, and M. Schmid, “The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films,” J. Appl. Phys. 113(21), 213510 (2013).
[Crossref]

J. Electrochem. Soc. (1)

M. S. Huh, B. S. Yang, J. Song, J. Heo, S.-J. Won, J. K. Jeong, C. S. Hwang, and H. J. Kim, “Improving the morphological and optical properties of sputtered Indium Tin Oxide thin films by adopting ultralow-pressure sputtering,” J. Electrochem. Soc. 156(1), 6–11 (2009).
[Crossref]

J. Mod. Phys. (1)

D. Raoufi and F. Hosseinpanahi, “Surface morphology dynamics in ITO thin films,” J. Mod. Phys. 03(08), 645–651 (2012).
[Crossref]

J. Phys. Chem. C (1)

Z. Ma, Z. Tang, E. Wang, M. R. Andersson, O. Inganas, and F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells,” J. Phys. Chem. C 116(46), 24462–24468 (2012).
[Crossref]

J. Renewable Sustainable Energy (1)

F. Lisco, A. Abbas, B. Maniscalco, P. M. Kaminski, M. Losurdo, K. Bass, G. Claudio, and J. M. Walls, “Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment,” J. Renewable Sustainable Energy 6(1), 011202 (2014).
[Crossref]

Nanomaterials (Basel) (1)

K. Han and C.-H. Chang, “Numerical modeling of sub-wavelength anti-reflective structures for solar module applications,” Nanomaterials (Basel) 4(1), 87–128 (2014).
[Crossref]

Photovoltaics Int. (1)

I. Luck, “Competitiveness of CIGS technology in the light of recent PV developments – part 1: The state of the art in CIGS production,” Photovoltaics Int. 24, 69–72 (2014).

Prog. Photovolt. Res. Appl. (4)

X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D. B. Mitzi, and M. Green, “The current status and future prospects of kesterite solar cells: a brief review,” Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Prog. Photovolt. Res. Appl. 23(7), 805–812 (2015).
[Crossref]

S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, “CIGS absorbers and processes,” Prog. Photovolt. Res. Appl. 18(6), 453–466 (2010).
[Crossref]

M. Neuschitzer, Y. Sanchez, S. Lopez-Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V. Izquierdo-Roca, A. Perez-Rodriguez, and E. Saucedo, “Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink,” Prog. Photovolt. Res. Appl. 23(11), 1660–1667 (2015).
[Crossref]

Thin Solid Films (2)

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films 361, 527–532 (2000).
[Crossref]

M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Avellán-Hampe, “Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation,” Thin Solid Films 535, 331–335 (2013).
[Crossref]

Other (7)

Optical Data from Sopra SA, “Molybdenum optical constants,” http://www.sspectra.com/sopra.html .

D. Cozza, “Modeling and physical studies of kesterite solar cells,” PhD dissertation, Aix Marseille University, (2016).

K. Maraun and A. Yamiya, “Solar Frontier achieves world record thin-film solar cell efficiency: 22.3%,” (Solar Frontier, 2015), http://www.solar-frontier.com/eng/news/2015/C051171.html .

Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, “Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length,” Adv. Energy Mater. 5(7), n/a–n/a (2015).

S. Siebentritt, G. Rey, A. Finger, D. Regesch, J. Sendler, T. P. Weiss, and T. Bertram, “What is the bandgap of kesterite?” Sol. Energy Mater. Sol. Cells in press (2015).

J. M. Bernhard, “Work function study of Iridium Oxide and Molybdenum using UPS and simultaneous Fowler-Norheim I-V plots with field emission energy distributions,” PhD dissertation. University of North Texas, p. 140, (1999).

S. Byrnes, “Multilayer optical calculations,” (Cornell University Library, 2016), arXiv:1603.02720.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Refractive indices n and (b) extinction coefficients k (reported in logarithmic scale) of the materials considered in the optical simulations: ITO [14], iZnO [15], CdS (SE), CZTSe [16], MoSe2 [17], Mo [18].
Fig. 2
Fig. 2 Experimental (baseline [19]) and simulated (Model) EQE/R spectra.
Fig. 3
Fig. 3 Results of MTM optical simulations varying the thicknesses of the TCO (iZnO + ITO) and CdS layers: (a) percentage of reflected photons R% considering the wavelengths range [400-1100] nm and (b) photocurrent Jph generated in the CZTSe absorber. The iZnO thickness is constant and equal to 50nm.
Fig. 4
Fig. 4 (a) Simulated Jph and R% (solid line) and experimental JSC and R% (dashed lines). The simulations consider a varying ITO thickness and constant thickness for the CdS and iZnO layers, both equal to 50nm. Figure (b) is a zoom-in of figure (a) in the [50-450] nm range, showing only Jph and JSC: the empty circles represent the MTM simulations considering the exact values of CdS-iZnO-ITO thickness corresponding to the experimental samples (Table 2) while the black solid line is the same as the one plotted in figure (a).
Fig. 5
Fig. 5 Measured and simulated EQE/R spectra of the four samples ITO1-4 (in this order from (a) to (d)). The black/red solid lines represent the experimental EQE/R. The green/brown dashed lines represent the simulated EQE/R obtained by MTM.

Tables (3)

Tables Icon

Table 1 Electrical properties of simulated materials

Tables Icon

Table 2 Thickness (in nm) of the top layers estimated by TMM and MTM

Tables Icon

Table 3 Surface roughness (σ) values, in terms of RMS for the MTM method

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r ' a,b = r a,b exp[ 2 ( 2πσ /λ ) 2 n a 2 ]
t ' a,b = t a,b exp[ 2 ( 2πσ /λ ) 2 ( n a n b ) 2 /2 ]
J ph =q 280nm 1300nm N phAM1.5 ( λ ) A CZTSe ( λ ) dλ     [ mA/ cm 2 ]
R % = 400nm 1100nm N phAM1.5 ( λ )R( λ ) dλ / 400nm 1100nm N phAM1.5 ( λ ) dλ   [ % ]

Metrics