Abstract

Auger and surface recombinations are major drawbacks that deteriorate a photon-to-electron conversion efficiencies in nanostructured (NS) Si solar cells. As an alternative to conventional frontside nanostructuring, we report how backside nanostructuring is beneficial for carrier collection during photovoltaic operation that utilizes a 50-μm-thin wafer. Ultrathin (4.3-nm-thin) zinc oxide was also effective for providing passivated tunneling contacts at the nanostructured backsides, which led to the enhancement of 24% in power conversion efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in ultrathin 25  μm exfoliated Si solar cells

Mohamed M. Hilali, Sayan Saha, Emmanuel Onyegam, Rajesh Rao, Leo Mathew, and Sanjay K. Banerjee
Appl. Opt. 53(27) 6140-6147 (2014)

Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells

Johannes Ziegler, Jan Haschke, Thomas Käsebier, Lars Korte, Alexander N. Sprafke, and Ralf B. Wehrspohn
Opt. Express 22(S6) A1469-A1476 (2014)

Symmetry-breaking nanostructures on crystalline silicon for enhanced light trapping in thin film solar cells

Seok Jun Han, Swapnadip Ghosh, Omar K. Abudayyeh, Brittany R. Hoard, Ethan C. Culler, Jose E. Bonilla, Sang M. Han, and Sang Eon Han
Opt. Express 24(26) A1586-A1596 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
    [Crossref]
  2. L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
    [Crossref]
  3. I. Kashkoush, G. Chen, and D. Nemeth, “Characterization of c-Si texturization in wet KOH/IPA and its effect on cell efficiency,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), pp. 2020–2023.
  4. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [Crossref] [PubMed]
  5. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [Crossref] [PubMed]
  6. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).
  7. M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
    [Crossref]
  8. M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
    [Crossref]
  9. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
    [Crossref]
  10. J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
    [Crossref] [PubMed]
  11. X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
    [Crossref]
  12. T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
    [Crossref]
  13. M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
    [Crossref]
  14. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  15. F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
    [Crossref]
  16. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
    [Crossref]
  17. J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
    [Crossref]
  18. Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
    [Crossref] [PubMed]
  19. H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
    [Crossref]
  20. A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
    [Crossref]
  21. P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
    [Crossref]
  22. J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
    [Crossref]
  23. J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
    [Crossref]
  24. E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
    [Crossref] [PubMed]
  25. A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
    [Crossref]
  26. R. G. Southwick III, “Program for multi-dielectric energy band diagram,” http://nano.boisestate.edu/research-areas/multi-dielectric energy-band-diagram-program. Accessed 2015.
  27. R. G. Southwick and W. B. Knowlton, “Stacked dual-oxide MOS energy band diagram visual representation program (IRW student paper),” IEEE Trans. Device Mat. Res. 6(2), 136–145 (2006).
    [Crossref]
  28. Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
    [Crossref]
  29. R. C. Newman, “Defects in silicon,” Rep. Prog. Phys. 45(10), 1163–1210 (1982).
    [Crossref]
  30. P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
    [Crossref]
  31. J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
    [Crossref]
  32. J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
    [Crossref]
  33. A. Gedeon, P. Massiani, and F. Babonnea, Zeolites and Related Materials: Trends Targets and Challenges (SET) (Elsevier, 2008).
  34. J. Bao, Interaction Between Plasma and Low-kappa Dielectric Materials (ProQuest, 2008).
  35. Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
    [Crossref] [PubMed]
  36. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, 1996).
  37. Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
    [Crossref] [PubMed]

2015 (3)

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

2014 (8)

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

2013 (2)

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

2012 (5)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

2011 (2)

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

2010 (2)

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

2009 (2)

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

2008 (2)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

2007 (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

2006 (2)

R. G. Southwick and W. B. Knowlton, “Stacked dual-oxide MOS energy band diagram visual representation program (IRW student paper),” IEEE Trans. Device Mat. Res. 6(2), 136–145 (2006).
[Crossref]

J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
[Crossref]

2005 (1)

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[Crossref] [PubMed]

2000 (1)

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

1982 (1)

R. C. Newman, “Defects in silicon,” Rep. Prog. Phys. 45(10), 1163–1210 (1982).
[Crossref]

Aberle, A. G.

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

Agrawal, R.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Alam, M. A.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Algasinger, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

Andreani, L. C.

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

Atwater, H. A.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Baek, J. Y.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

Baji, Z.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Bang, J. H.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Barna, P.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Barnett, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Barsony, I.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Bivour, M.

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

Boettcher, S. W.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Bokor, J.

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

Brandt, M. S.

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

Branz, H.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Branz, H. M.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Brendel, R.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

Briggs, R. M.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Bullock, J.

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

Cabre, R.

J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
[Crossref]

Cao, F.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Carroll, M.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Chang, F.-Y.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Chen, C.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Chen, G.

I. Kashkoush, G. Chen, and D. Nemeth, “Characterization of c-Si texturization in wet KOH/IPA and its effect on cell efficiency,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), pp. 2020–2023.

Chen, K.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Chen, S.-W.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Chen, T.-G.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Cheng, Y.-C.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Cho, Y.

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

Cuevas, A.

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Ding, W.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Ding, Y.

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[Crossref] [PubMed]

Dongaonkar, P. S.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Eng, P. J.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Feldmann, F.

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

Ford, G. M.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Fuchsel, K.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Garnett, E. C.

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Gelfand, R. M.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Gerger, A. P.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Gesemann, B.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Gimpel, T.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Glunz, S. W.

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

Gramsch, S. A.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Gwon, M.

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

Haase, F.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

Han, J.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Hemley, R. J.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Hermle, M.

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

Hillhouse, H. W.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Horvath, Z. E.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Hsiao, J.-C.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Hu, M. Y.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Huang, B.-Y.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Huang, J.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Jee, S.-W.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Ji, J.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Jia, R.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Jung, J.-Y.

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Kao, C.-C.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Kasebier, T.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Kashkoush, I.

I. Kashkoush, G. Chen, and D. Nemeth, “Characterization of c-Si texturization in wet KOH/IPA and its effect on cell efficiency,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), pp. 2020–2023.

Kelzenberg, M. D.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Khanal, D. R.

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

Kim, D.-W.

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

Kim, J.

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

Knowlton, W. B.

R. G. Southwick and W. B. Knowlton, “Stacked dual-oxide MOS energy band diagram visual representation program (IRW student paper),” IEEE Trans. Device Mat. Res. 6(2), 136–145 (2006).
[Crossref]

Kontermann, S.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Kowalczewski, P.

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

Koynov, S.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

Labadi, Z.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Lee, J.-H.

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Lennon, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Lewis, N. S.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Li, C.-K.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Li, H.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Li, J.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Li, X.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Liu, X.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Lochtefeld, A.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Loser, S.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Lundstrom, M. S.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Mao, H.-K.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Marks, T. J.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Marsal, L. F.

J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
[Crossref]

McKeon, J.

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

Meier, D. L.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Meng, Y.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Mohseni, H.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Molnar, G.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Moore, J.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Nam, Y.-H.

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Naumann, V.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Nemeth, D.

I. Kashkoush, G. Chen, and D. Nemeth, “Characterization of c-Si texturization in wet KOH/IPA and its effect on cell efficiency,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), pp. 2020–2023.

Newman, R. C.

R. C. Newman, “Defects in silicon,” Rep. Prog. Phys. 45(10), 1163–1210 (1982).
[Crossref]

Oh, J.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

Opila, R.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Otto, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Page, M. R.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Pallares, J.

J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
[Crossref]

Park, H.-H.

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

Park, K.-T.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Park, M.-J.

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Park, T. J.

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Paye, J.

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

Petermann, J. H.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

Putnam, M. C.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Ratner, M. A.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Reichel, C.

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

Richter, A.

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

Rojas, E. G.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

Samundsett, C.

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

Schmidt, J.

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

Schropp, R. E. I.

J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
[Crossref]

Servaites, J. D.

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

Shaw, D. M.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Shen, M.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Shin, S.-M.

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Shu, J.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Song, J.-W.

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Southwick, R. G.

R. G. Southwick and W. B. Knowlton, “Stacked dual-oxide MOS energy band diagram visual representation program (IRW student paper),” IEEE Trans. Device Mat. Res. 6(2), 136–145 (2006).
[Crossref]

Sprafke, A. N.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Spurgeon, J. M.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Steinkemper, H.

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

Stradins, P.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Stutzmann, M.

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

Su, X.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Tse, J. S.

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Tseng, Y.-C.

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

Turner-Evans, D. B.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Um, H.-D.

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Volk, J.

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Wan, Y.

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

Wang, X.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Wang, X.-F.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Wang, Z. L.

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[Crossref] [PubMed]

Warren, E. L.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

Wehrspohn, R. B.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Wehspohn, R. B.

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Werner, F.

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

Wu, D.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Wu, J.

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

Wu, Y.-R.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Xing, Z.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Yan, D.

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

Yang, P.

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Ye, T.

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Ye, X.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Yost, V. E.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, P.

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Yuan, H.-C.

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Zhang, L.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Ziegler, J.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Zielke, D.

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

Zilk, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Zou, S.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Adv. Energy Mater. (1)

M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, “Improved black silicon for photovoltaic applications,” Adv. Energy Mater. 3(8), 1068–1074 (2013).
[Crossref]

Adv. Funct. Mater. (1)

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24(42), 6708–6716 (2014).
[Crossref]

Adv. Mater. Interfaces (1)

J.-W. Song, J.-Y. Jung, H.-D. Um, X. Li, M.-J. Park, Y.-H. Nam, S.-M. Shin, T. J. Park, R. B. Wehspohn, and J.-H. Lee, “Degradation mechanism of Al2O3 passivation in nanostructured Si solar cells,” Adv. Mater. Interfaces 1(5), 1400010 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Fuchsel, T. Kasebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 2(3), 147–164 (2014).

Appl. Phys. Lett. (2)

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, “Influence of nanowires length on performance of crystalline silicon solar cell,” Appl. Phys. Lett. 98(15), 151116 (2011).
[Crossref]

Cryst. Growth Des. (1)

Z. Baji, Z. Labadi, Z. E. Horvath, G. Molnar, J. Volk, I. Barsony, and P. Barna, “Nucleation and growth modes of ALD ZnO,” Cryst. Growth Des. 12(11), 5615–5620 (2012).
[Crossref]

Energy Environ. Sci. (2)

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3(8), 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4(3), 866–871 (2011).
[Crossref]

IEEE J. Photovoltaics (1)

L. Wang, A. Lochtefeld, J. Han, A. P. Gerger, M. Carroll, J. Ji, A. Lennon, H. Li, R. Opila, and A. Barnett, “Development of a 16.8% efficient 18-µm silicon solar cell on steel,” IEEE J. Photovoltaics 4(6), 1397–1404 (2014).
[Crossref]

IEEE Trans. Device Mat. Res. (1)

R. G. Southwick and W. B. Knowlton, “Stacked dual-oxide MOS energy band diagram visual representation program (IRW student paper),” IEEE Trans. Device Mat. Res. 6(2), 136–145 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (2)

P. S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-Ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys. 108(12), 124509 (2010).
[Crossref]

J. Pallares, R. Cabre, L. F. Marsal, and R. E. I. Schropp, “A compact equivalent circuit for the dark current-voltage characteristics of nonideal solar cells,” J. Appl. Phys. 100(8), 084513 (2006).
[Crossref]

J. Electron Microsc. (Tokyo) (1)

Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005).
[Crossref] [PubMed]

Nano Lett. (1)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Nanoscale (1)

Y. Cho, M. Gwon, H.-H. Park, J. Kim, and D.-W. Kim, “Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications,” Nanoscale 6(16), 9568–9573 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. Oh, H.-C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol. 7(11), 743–748 (2012).
[Crossref] [PubMed]

E. C. Garnett, Y.-C. Tseng, D. R. Khanal, J. Wu, J. Bokor, and P. Yang, “Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements,” Nat. Nanotechnol. 4(5), 311–314 (2009).
[Crossref] [PubMed]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B 86(16), 165202 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-C. Kao, R. J. Hemley, and H.-K. Mao, “Inelastic x-ray scattering of dense solid oxygen: evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11640–11644 (2008).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (3)

A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43µm-thick crystalline Si solar cell from layer transfer using porous silicon,” Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012).
[Crossref]

T.-G. Chen, P. Yu, S.-W. Chen, F.-Y. Chang, B.-Y. Huang, Y.-C. Cheng, J.-C. Hsiao, C.-K. Li, and Y.-R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22(4), 452–461 (2014).
[Crossref]

Rep. Prog. Phys. (1)

R. C. Newman, “Defects in silicon,” Rep. Prog. Phys. 45(10), 1163–1210 (1982).
[Crossref]

RSC Advances (1)

J.-W. Song, Y.-H. Nam, M.-J. Park, S.-M. Shin, R. B. Wehspohn, and J.-H. Lee, “Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth,” RSC Advances 5(49), 39177–39181 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

P. Kowalczewski and L. C. Andreani, “Towards the efficiency limits of silicon solar cells: How thin is too thin?” Sol. Energy Mater. Sol. Cells 143, 260–268 (2015).
[Crossref]

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, and S. W. Glunz, “Tunnel oxide passivated contacts as an alternative to partial rear contacts,” Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).
[Crossref]

F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).
[Crossref]

J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, and Y. Wan, “Simple silicon solar cells featuring an a-Si:H enehanced rear MIS contact,” Sol. Energy Mater. Sol. Cells 138, 22–25 (2015).
[Crossref]

Other (5)

I. Kashkoush, G. Chen, and D. Nemeth, “Characterization of c-Si texturization in wet KOH/IPA and its effect on cell efficiency,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (2011), pp. 2020–2023.

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, 1996).

A. Gedeon, P. Massiani, and F. Babonnea, Zeolites and Related Materials: Trends Targets and Challenges (SET) (Elsevier, 2008).

J. Bao, Interaction Between Plasma and Low-kappa Dielectric Materials (ProQuest, 2008).

R. G. Southwick III, “Program for multi-dielectric energy band diagram,” http://nano.boisestate.edu/research-areas/multi-dielectric energy-band-diagram-program. Accessed 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Flow diagram and (b) cross-sectional SEM image for 50 μm-thin B-NS Si solar cells. The inset of Fig. 1(b) is an optical image showing the active area of 0.9 cm2
Fig. 2
Fig. 2 (a) Comparison of the spectral absorption and external quantum efficiency (EQE) as a function of the wavelength (from 400 to 1100 nm). Inset shows frontside and backside NS Si solar cells with a nanostructure height of 500 nm. (b) Internal quantum efficiency (IQE).
Fig. 3
Fig. 3 (a) Lifetimes of minority carriers as a function of the minority carrier density (cm−3). Experimental (for planar and NS Si) and calculated (for intrinsic) data. (b) Calculated and measured short circuit current (JSC) of frontside and backside NS Si solar cells with and without surface passivation.
Fig. 4
Fig. 4 (a) Energy diagram in the Al (1 μm)/p+-Si (0.45-μm-thick)/p-Si (50-μm-thick) structure; orange and blue arrows denote electron flow and hole flow, respectively. The red arrow indicates holes trapped in surface states, denoted by a red rectangle. (b) Secondary ion mass spectrometry depth profile for boron annealed at 860 °C. (c) Analysis of the band diagram for the Al/ZnO/p+-Si structure. This energy diagram was estimated based on the following assumptions: (1) work function of Al is 4.2 eV, (2) bandgap of amorphous ZnO is 3.9 eV [for calculated optical bandgaps, see Fig. 5(a)], and (3) boron doping concentration at the p+-Si surface is ~1 × 1020 cm−3 [Fig. 4(b)]. The inset shows the hole flow with the downward band bending of silicon. (d) Variation of surface potential as a function of dielectric contants (k) of ZnO. In the inset, hole carrier density (cm−3) decreases as D value increases from 0.5 to 1 nm; here, D deonotes a nanoscale distance from the ZnO/p+-Si interface into p+-region.
Fig. 5
Fig. 5 (a) Optical transmittance comparing various thicknesses of ALD-ZnO layers. The inset shows that optical bandgaps are 3.93 and 3.97 eV for ZnO thicknesses of 4.3 (red) and 7.2 nm (green), respectively. (b) A cell structure showing the ZnO-passivated contacts integrated with backside NS. Cross-sectional TEM images showing (c) the Al/ZnO/NS Si contact, and (d−f) various thicknesses (1.4, 4.3, 7.2 nm) of ALD ZnO deposited on NS surfaces.
Fig. 6
Fig. 6 (a) Dark I-V curves of the Al/ZnO/p+-Si structure with various ZnO thicknesses (1.4, 4.3, and 7.2 nm). Inset shows I-V curves without a ZnO layer. (b) J−V curves under illumination for (1) B−NS Si solar cells (black dots), (2) B−NS Si solar cells passivated by 1.4-nm-thin ZnO films (blue dots), (3) 4.3-nm-thin ZnO (red dots), and (4) 7.3-nm-thin ZnO (green dots). The inset shows the dark J-V curves.
Fig. 7
Fig. 7 (a) FTIR spectra of NS Si passivated using ZnO thicknesses (1.4, 4.3, 7.2 nm). (b) EEL spectra spatially-resolved with a spectral interval of 1 nm. Inset shows a magnified high-resolution transmission electron microscopy (HRTEM) image for a 4.3-nm-thin ZnO layer on an NS Si surface. The scale bar in the inset represents 2 nm.

Tables (1)

Tables Icon

Table 1 Average photovoltaic performances over 10 devices of B−NS Si solar cells with various thicknesses of ALD−ZnO: (1) 0, (2) 1.4, (3) 4.3, and (4) 7.2 nm, respectively. (The champion data are shown by parentheses)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J sc = 400nm λ g I(λ)A(λ) eλ hc dλ
J sc = J ph J R V J sc × R S R sh
V oc = K B T q ln[ ( J sc J R )+1 ]

Metrics