Abstract

This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicone optical elements for cost-effective freeform solar concentration

Sifang Cui, Nicholas P. Lyons, Liliana Ruiz Diaz, Remington Ketchum, Kyung-Jo Kim, Hao-Chih Yuan, Mike Frasier, Wei Pan, and Robert A. Norwood
Opt. Express 27(8) A572-A580 (2019)

Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators

P. Besson, P. McVey White, C. Dominguez, P. Voarino, P. Garcia-Linares, M. Lemiti, H. Schriemer, K. Hinzer, and M. Baudrit
Opt. Express 24(2) A397-A407 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
    [Crossref]
  2. E. Lorenzo and G. Sala, “Hybrid silicone-glass Fresnel lens as concentrator for photovoltaic applications,” The Sun (Baltim., Md.) II, 536–539 (1979).
  3. M. Victoria, “New concepts and techniques for the development of high-efficiency concentrating photovoltaic modules,” PhD, E.T.S.I. Telecomunicación (UPM) (2014).
  4. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
    [Crossref] [PubMed]
  5. S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
    [Crossref]
  6. F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, “Flat Fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV,” Opt. Express 19(S3Suppl 3), A280–A294 (2011).
    [Crossref] [PubMed]
  7. E. Hecht, Optics, 3rd ed. (Addison Wesley Longman, Inc., 1998).
  8. “ASTM G173 standard tables for reference solar spectral irradiances
  9. K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
    [Crossref]
  10. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
    [Crossref]
  11. I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. Res. Appl. 11(6), 387–405 (2003).
    [Crossref]
  12. M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
    [Crossref]
  13. M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
    [Crossref]
  14. S. R. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems,” in IEEE Photovoltaic Specialists Conference (PVSC) (1996), pp. 361–364.
    [Crossref]
  15. V. D. Rumyantsev, N. Y. Davidyuk, E. A. Ionova, P. V. Pokrovskiy, N. A. Sadchikov, and V. M. Andreev, “Thermal Regimes of Fresnel Lenses and Cells in “All‐Glass” HCPV Modules,” AIP Conf. Proc. 1277, 89–92 (2010).
  16. T. Hornung, A. Bachmaier, P. Nitz, and A. Gombert, “Temperature Dependent Measurement And Simulation Of Fresnel Lenses For Concentrating Photovoltaics,” in (AIP Publishing, 2010), Vol. 1277, pp. 85–88.
  17. T. Hornung, M. Steiner, and P. Nitz, “Estimation of the Influence of Fresnel Lens Temperature on Energy Generation of a Concentrator Photovoltaic System,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
    [Crossref]
  18. T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).
  19. J. M. Cariou, J. Dugas, L. Martin, and P. Michel, “Refractive-index variations with temperature of PMMA and polycarbonate,” Appl. Opt. 25(3), 334–336 (1986).
    [Crossref] [PubMed]

2016 (2)

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

2013 (1)

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

2012 (1)

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the Influence of Fresnel Lens Temperature on Energy Generation of a Concentrator Photovoltaic System,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

2011 (2)

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, “Flat Fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV,” Opt. Express 19(S3Suppl 3), A280–A294 (2011).
[Crossref] [PubMed]

2009 (1)

2007 (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

2003 (1)

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. Res. Appl. 11(6), 387–405 (2003).
[Crossref]

1986 (1)

1979 (1)

E. Lorenzo and G. Sala, “Hybrid silicone-glass Fresnel lens as concentrator for photovoltaic applications,” The Sun (Baltim., Md.) II, 536–539 (1979).

Antón, I.

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref] [PubMed]

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. Res. Appl. 11(6), 387–405 (2003).
[Crossref]

Askins, S.

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

Bessler, Y.

T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).

Bett, A. W.

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

Cariou, J. M.

Cotsell, J. N.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

Cumpston, J. S.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

Dimroth, F.

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

Domínguez, C.

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref] [PubMed]

Dugas, J.

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Fleury, K.

Gombert, A.

T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Habraken, S.

Herrero, R.

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

Hornung, T.

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the Influence of Fresnel Lens Temperature on Energy Generation of a Concentrator Photovoltaic System,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Ketola, B. M.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

Kurtz, S.

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

Kurtz, S. R.

S. R. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems,” in IEEE Photovoltaic Specialists Conference (PVSC) (1996), pp. 361–364.
[Crossref]

Languy, F.

Lenaerts, C.

Loicq, J.

Lorenzo, E.

E. Lorenzo and G. Sala, “Hybrid silicone-glass Fresnel lens as concentrator for photovoltaic applications,” The Sun (Baltim., Md.) II, 536–539 (1979).

Martin, L.

McIntosh, K. R.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

Michel, P.

Neubauer, M.

T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Nitz, P.

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the Influence of Fresnel Lens Temperature on Energy Generation of a Concentrator Photovoltaic System,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).

Norris, A. W.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

O’Neill, M. J.

S. R. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems,” in IEEE Photovoltaic Specialists Conference (PVSC) (1996), pp. 361–364.
[Crossref]

Pachón, D.

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. Res. Appl. 11(6), 387–405 (2003).
[Crossref]

Powell, N. E.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

Regaert, D.

Sala, G.

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref] [PubMed]

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. Res. Appl. 11(6), 387–405 (2003).
[Crossref]

E. Lorenzo and G. Sala, “Hybrid silicone-glass Fresnel lens as concentrator for photovoltaic applications,” The Sun (Baltim., Md.) II, 536–539 (1979).

Schult, T.

T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).

Steiner, M.

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the Influence of Fresnel Lens Temperature on Energy Generation of a Concentrator Photovoltaic System,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Thibert, T.

Victoria, M.

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

AIP Conf. Proc. (1)

S. Askins, M. Victoria, R. Herrero, C. Domínguez, I. Antón, G. Sala, F. Dimroth, S. Kurtz, G. Sala, and A. W. Bett, “Effects of Temperature on Hybrid Lens Performance,” AIP Conf. Proc. 1407, 57–60 (2011).
[Crossref]

Appl. Opt. (1)

Opt. Express (2)

Opt. Mater. (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

I. Antón, D. Pachón, and G. Sala, “Characterization of optical collectors for concentration photovoltaic applications,” Prog. Photovolt. Res. Appl. 11(6), 387–405 (2003).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Prog. Photovolt. Res. Appl. 24(1), 3–11 (2016).
[Crossref]

M. Victoria, R. Herrero, C. Domínguez, I. Antón, S. Askins, and G. Sala, “Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi‐junction solar cells,” Prog. Photovolt. Res. Appl. 21(3), 308–318 (2013).
[Crossref]

Sol. Energy (1)

M. Victoria, S. Askins, R. Herrero, I. Antón, and G. Sala, “Assessment of the optical efficiency of a Primary Lens to be used in a CPV system,” Sol. Energy 134, 406–415 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

T. Hornung, M. Steiner, and P. Nitz, “Estimation of the Influence of Fresnel Lens Temperature on Energy Generation of a Concentrator Photovoltaic System,” Sol. Energy Mater. Sol. Cells 99, 333–338 (2012).
[Crossref]

The Sun (Baltim., Md.) (1)

E. Lorenzo and G. Sala, “Hybrid silicone-glass Fresnel lens as concentrator for photovoltaic applications,” The Sun (Baltim., Md.) II, 536–539 (1979).

Other (8)

M. Victoria, “New concepts and techniques for the development of high-efficiency concentrating photovoltaic modules,” PhD, E.T.S.I. Telecomunicación (UPM) (2014).

E. Hecht, Optics, 3rd ed. (Addison Wesley Longman, Inc., 1998).

“ASTM G173 standard tables for reference solar spectral irradiances

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 544–549.
[Crossref]

T. Schult, M. Neubauer, Y. Bessler, P. Nitz, and A. Gombert, “Temperature Dependence of Fresnel Lenses for Concentrating Photovoltaics,” 2nd Int. Workshop Conc. Photovolt. Opt. Power (2009).

S. R. Kurtz and M. J. O’Neill, “Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems,” in IEEE Photovoltaic Specialists Conference (PVSC) (1996), pp. 361–364.
[Crossref]

V. D. Rumyantsev, N. Y. Davidyuk, E. A. Ionova, P. V. Pokrovskiy, N. A. Sadchikov, and V. M. Andreev, “Thermal Regimes of Fresnel Lenses and Cells in “All‐Glass” HCPV Modules,” AIP Conf. Proc. 1277, 89–92 (2010).

T. Hornung, A. Bachmaier, P. Nitz, and A. Gombert, “Temperature Dependent Measurement And Simulation Of Fresnel Lenses For Concentrating Photovoltaics,” in (AIP Publishing, 2010), Vol. 1277, pp. 85–88.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of the materials comprising the ADG Fresnel lens.
Fig. 2
Fig. 2 Relative focal distance (focal distance normalized by the nominal value) as a function of wavelength for both the EVA/PC Achromatic Doublet on Glass (ADG) (solid line) and a classic Silicone On Glass (SOG) (dashed line). The nominal focal distance Fm correspond to the intermediate wavelength λm that is about 550 nm.
Fig. 3
Fig. 3 Optical efficiency of the lens vs. radius of the receiver for the EVA-PC ADG Fresnel lens design and the SOG Fresnel lens, both with a 75 mm focal distance and entrance aperture of 40x40 mm2. Top x-axis indicates the geometric concentration Xgeo corresponding to the radius of the receiver selected (bottom x-axis).
Fig. 4
Fig. 4 Acceptance angle θ vs geometrical concentration Xg predicted by ray-tracing simulation for the ADG Fresnel lens and the equivalent classic SOG Fresnel lens. Acceptance angle is defined as the deviation angle such that the optical efficiency is 90% of the maximum.
Fig. 5
Fig. 5 Spatial distribution of the photogenerated current for the top J sc top (upper half graphs) and middle J sc mid (lower half) subcells at different temperatures predicted by ray-tracing simulations. Contour plots (third line) show the ratio between top and middle photocurrents J sc top / J sc mid . Blue areas represent cell regions where there is an excess of top photogenerated current (middle limited) while red areas represent an excess of middle photogenerated current (top limited). Regions where both subcell photocurrents are matched are shown in white. Gray areas represent regions where both photocurrent values are below 0.1% of the maximum, that is, dark areas.
Fig. 6
Fig. 6 Optical efficiency of the EVA-PC ADG Fresnel lens as a function of the average draft angle and tip rounding values. Simulations include neither materials absorption nor Fresnel reflection losses. An ’average draft angle’ is used since the draft angle varies along the lens profile in order to ease the manufacturing of the plastic injected piece. The black circle marks the simulation assuming the most probable geometry according to the manufacturer. Consequently, those values are included in the simulation in Table 1.
Fig. 7
Fig. 7 Normalized efficiency vs. manufacturing error affecting concentricity of the two Fresnel faces of the plastic piece when the ADG is used at different concentration ratios. The efficiency values have been normalized using the value attained when perfect concentricity is assumed.

Tables (1)

Tables Icon

Table 1 Optical efficiency predicted by ray-tracing for the ADG Fresnel lens composed of glass, EVA, and PC and the equivalent SOG Fresnel lens used as benchmark.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 F doublet = 1 F 1 + 1 F 2
υ d = n d 1 n F n C
υ solar = n m 1 n b n r
F 1 F 2 = υ 2 υ 1
η op = P out P in
CAP= X g sinθ
X g = A in A out
S isubcell (λ)=B(λ)S R isubcell (λ)

Metrics