Abstract

We have studied the optical properties of Sc-hyperdoped crystalline silicon based on quantum calculations. We have designed several probable configurations and found that the interstitial atomic positions of Sc (ScI, ScSI, ScTI, ScHI) are stable in the silicon matrix and can largely extend the absorption range of silicon from visible to infrared. The sub-band gap light absorption is attributed to the change of band structures of silicon and its intensity depends on the atomic concentration of Sc in silicon. The special effect of Sc on the properties of silicon will extend the sensitivity of silicon-based photodetectors to near infrared wavelength range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigating an intermediate-band photovoltaic material based on scandium-hyperdoped silicon through first-principles calculations

Xiao Dong, Yongyong Wang, Xueping Li, and Yingying Li
Opt. Express 25(12) A602-A611 (2017)

Raman spectra and optical properties of the chalcogen-hyperdoped silicon: a first-principles study

Xiao Dong, Xiuxiu Fang, Yongyong Wang, and Xiaohui Song
Opt. Express 26(18) A796-A805 (2018)

Improving crystallinity of femtosecond-laser hyperdoped silicon via co-doping with nitrogen

Haibin Sun, Cong Liang, Guojin Feng, Zhen Zhu, Jun Zhuang, and Li Zhao
Opt. Mater. Express 6(4) 1321-1328 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
    [Crossref] [PubMed]
  2. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
    [Crossref]
  3. Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
    [Crossref]
  4. K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
    [Crossref]
  5. E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
    [Crossref] [PubMed]
  6. X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
    [Crossref]
  7. X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
    [Crossref]
  8. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
    [Crossref]
  9. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
    [Crossref]
  10. M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
    [Crossref]
  11. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  12. N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
    [Crossref] [PubMed]
  13. A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
    [Crossref]
  14. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
    [Crossref]
  15. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
    [Crossref]
  16. H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
    [Crossref]
  17. H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
    [Crossref]
  18. X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
    [Crossref]

2015 (1)

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

2014 (1)

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

2013 (2)

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

2012 (3)

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

2011 (1)

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

2009 (1)

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

2008 (1)

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

2007 (1)

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

2005 (2)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

2004 (2)

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

2003 (1)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

1997 (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Aguilera, I.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Aziz, M. J.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Buonassisi, T.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Campman, K.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Carey, J. E.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Crouch, C. H.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Dong, X.

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

Ertekin, E.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Feng, G.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Friend, C. M.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

Génin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Grossman, J. C.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Li, N.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Li, Y.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Liang, C.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

Liu, S.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Liu, Y.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

López, N.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Luque, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Martí, A.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Mazur, E.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Ning, B.

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Ning, X.

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Palacios, P.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Recht, D.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Reichertz, L. A.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Rong, X.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Said, A. J.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Sánchez, K.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Shao, H.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Sheehy, M. A.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

Shen, M.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, “Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes,” Opt. Lett. 30(14), 1773–1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

Song, X.

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Stanley, C.

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Sun, H.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

Tull, B. R.

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Wahnón, P.

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Walukiewicz, W.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Wang, J.

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Wang, Y.

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

Winkler, M. T.

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Yu, K. M.

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Zhang, J.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zhang, W.

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Zhao, L.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Zhu, J.

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Zhu, Z.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

Zhuang, J.

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

Appl. Phys. Express (3)

X. Dong, N. Li, C. Liang, H. Sun, G. Feng, Z. Zhu, H. Shao, X. Rong, L. Zhao, and J. Zhuang, “Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere,” Appl. Phys. Express 6(8), 081301 (2013).
[Crossref]

H. Shao, C. Liang, Z. Zhu, B. Ning, X. Dong, X. Ning, L. Zhao, and J. Zhuang, “Hybrid functional studies on impurity-concentration-controlled band engineering of chalcogen-hyperdoped silicon,” Appl. Phys. Express 6(8), 085801 (2013).
[Crossref]

X. Dong, X. Song, Y. Wang, and J. Wang, “First-principles calculations of a promising intermediate-band photovoltaic material based on Co-hyperdoped crystalline silicon,” Appl. Phys. Express 8(8), 081302 (2015).
[Crossref]

Appl. Phys. Lett. (3)

X. Dong, N. Li, Z. Zhu, H. Shao, X. Rong, C. Liang, H. Sun, G. Feng, L. Zhao, and J. Zhuang, “A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation,” Appl. Phys. Lett. 104(9), 091907 (2014).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84(11), 1850–1852 (2004).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004).
[Crossref]

Chem. Mater. (1)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17(14), 3582–3586 (2005).
[Crossref]

Europhys. Lett. (1)

H. Shao, Y. Li, J. Zhang, B. Ning, W. Zhang, X. Ning, L. Zhao, and J. Zhuang, “Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon,” Europhys. Lett. 99(4), 46005 (2012).
[Crossref]

J. Appl. Phys. (1)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys. 93(5), 2626–2629 (2003).
[Crossref]

Laser Phys. (1)

Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao, “Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon,” Laser Phys. 18(10), 1148–1152 (2008).
[Crossref]

Mater. Sci. Eng. B (1)

M. A. Sheehy, B. R. Tull, C. M. Friend, and E. Mazur, “Chalcogen doping of silicon via intense femtosecond-laser irradiation,” Mater. Sci. Eng. B 137(1-3), 289–294 (2007).
[Crossref]

Nat. Photonics (1)

A. Luque, A. Martí, and C. Stanley, “Understanding intermediate-band solar cells,” Nat. Photonics 6(3), 146–152 (2012).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, “Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin,” Phys. Rev. B 79(16), 165203 (2009).
[Crossref]

Phys. Rev. Lett. (3)

E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, and J. C. Grossman, “Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin,” Phys. Rev. Lett. 108(2), 026401 (2012).
[Crossref] [PubMed]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Phys. Rev. Lett. 106(2), 028701 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Four typical atomic configurations of Sc-doped bulk Si with a Sc atom situated at (a) substitutional position, (b) bond-center interstitial position,(c) split <110> position,(d) tetrahedral interstitial position, and (e) hexagonal interstitial position, respectively. These configurations are denoted as ScS, ScI, ScSI, ScTI, and ScHI, respectively.
Fig. 2
Fig. 2 Dielectric function (imaginary part) (a) and absorption (b) of bulk silicon, bond-center interstitial configuration (ScI), split <110> position (ScSI), tetrahedral interstitial configuration (ScTI), and hexagonal interstitial configuration (ScHI) in 2 × 2 × 2 supercell.
Fig. 3
Fig. 3 Electronic band structures of the bond-center interstitial configuration (ScI) (a), split interstitial configuration (ScSI) (b), tetrahedral interstitial configuration (ScTI) (c), and hexagonal interstitial configuration (ScHI) (d) in 2 × 2 × 2 supercell.
Fig. 4
Fig. 4 Dielectric function (imaginary part) (a) and optical absorption coefficient (b) of the bond-center interstitial configuration of ScI in 2 × 2 × 2, 2 × 2 × 3, 2 × 3 × 3, and 3 × 3 × 3 silicon supercells.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E f =E[ScS i n ]E[S i n ] 1 2 E[S c 2 ]

Metrics