Abstract

Surface-enhanced Raman spectroscopy (SERS) is widely used to sensitively detect molecules or markers in pharmacology, biology, etc. We study numerically the possibility to realize SERS detections directly on a photonic chip. It is presented that a SERS sensor created by combining a gold slot waveguide and a Si3N4 strip waveguide can be designed to excite enhanced Raman effects and extract their scattering signals on a chip. Using 3D finite-difference time-domain simulations, the SERS processes, excitation of surface plasmon in slots and radiation of induced Raman dipoles, are analyzed to simulate SERS detections in reality. It demonstrates the influence of the geometrical parameters on the electromagnetic fields in slots and therefore the local enhancements, based on the |E|4-approximation. The results show that a SERS nanosensor can be achieved based on the hybrid waveguide. The integration of this sensor with a micro-laser and a micro-demultiplexer, could achieve an on-a-chip and fully integrated system for portable and fast SERS detections.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles

Yu Guo, Jing Yu, Chonghui Li, Zhen Li, Jie Pan, Aihua Liu, Baoyuan Man, Tianfu Wu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21784-21796 (2018)

Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides

Qipu Cao, Jijun Feng, Hongliang Lu, Hui Zhang, Fuling Zhang, and Heping Zeng
Opt. Express 26(19) 24614-24620 (2018)

Experimental and theoretical investigations of an air-slot coupler between dielectric and plasmonic waveguides

Rami A. Wahsheh and Mustafa A. G. Abushagur
Opt. Express 24(8) 8237-8242 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications,” Appl. Spectrosc. 65(8), 825–837 (2011).
    [Crossref] [PubMed]
  2. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
    [Crossref]
  3. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
    [Crossref] [PubMed]
  4. S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
    [Crossref] [PubMed]
  5. S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc. 40(3), 277–288 (2009).
    [Crossref]
  6. T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
    [Crossref]
  7. K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
    [Crossref] [PubMed]
  8. K. R. Ackermann, T. Henkel, and J. Popp, “Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System,” ChemPhysChem 8(18), 2665–2670 (2007).
    [Crossref] [PubMed]
  9. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
    [Crossref]
  10. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express 12(22), 5481–5486 (2004).
    [Crossref] [PubMed]
  11. N. Ismail, A. C. Baclig, P. J. Caspers, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “Design of low-loss arrayed waveguide gratings for applications in integrated Raman spectroscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010), paper CFA7.
    [Crossref]
  12. N. Ismail, L.-P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36(23), 4629–4631 (2011).
    [Crossref] [PubMed]
  13. N. Ismail, F. Sun, G. Sengo, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Improved arrayed-waveguide-grating layout avoiding systematic phase errors,” Opt. Express 19(9), 8781–8794 (2011).
    [Crossref] [PubMed]
  14. Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
    [Crossref]
  15. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
    [Crossref] [PubMed]
  16. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
    [Crossref] [PubMed]
  17. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [Crossref] [PubMed]
  18. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).
  19. S. Bisschop, A. Guille, D. Van Thourhout, Z. Hens, and E. Brainis, “Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides,” Opt. Express 23(11), 13713–13724 (2015).
    [Crossref] [PubMed]
  20. B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
    [Crossref]
  21. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 2(2), 236–250 (1996).
    [Crossref]
  22. Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
    [Crossref]
  23. A.-S. Grimault, A. Vial, and M. L. De La Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006).
    [Crossref]
  24. H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009).
    [Crossref] [PubMed]
  25. S.-L. Chuang, “Application of the strongly coupled-mode theory to integrated optical devices,” IEEE J. Quantum Electron. 23(5), 499–509 (1987).
    [Crossref]
  26. R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
    [Crossref]

2015 (1)

2012 (3)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

2011 (4)

2010 (2)

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

2009 (2)

2008 (3)

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

2007 (2)

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

K. R. Ackermann, T. Henkel, and J. Popp, “Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System,” ChemPhysChem 8(18), 2665–2670 (2007).
[Crossref] [PubMed]

2006 (2)

A.-S. Grimault, A. Vial, and M. L. De La Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006).
[Crossref]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2000 (1)

T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
[Crossref]

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 2(2), 236–250 (1996).
[Crossref]

1987 (1)

S.-L. Chuang, “Application of the strongly coupled-mode theory to integrated optical devices,” IEEE J. Quantum Electron. 23(5), 499–509 (1987).
[Crossref]

Ackermann, K. R.

K. R. Ackermann, T. Henkel, and J. Popp, “Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System,” ChemPhysChem 8(18), 2665–2670 (2007).
[Crossref] [PubMed]

Apuzzo, A.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

Baclig, A. C.

Baehr-Jones, T.

Bantz, K. C.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Bisschop, S.

Blaize, S.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Brainis, E.

S. Bisschop, A. Guille, D. Van Thourhout, Z. Hens, and E. Brainis, “Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides,” Opt. Express 23(11), 13713–13724 (2015).
[Crossref] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Brongersma, M.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Bruyant, A.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Caspers, P. J.

Chelnokov, A.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Chen, L.

Cheng, X.

Choo-Smith, L.-P.

Chuang, S.-L.

S.-L. Chuang, “Application of the strongly coupled-mode theory to integrated optical devices,” IEEE J. Quantum Electron. 23(5), 499–509 (1987).
[Crossref]

Cialla, D.

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

De Geyter, B.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

De La Chapelle, M. L.

A.-S. Grimault, A. Vial, and M. L. De La Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006).
[Crossref]

de Ridder, R. M.

Delacour, C.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Dluhy, R. A.

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Driessen, A.

Driskell, J. D.

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Efrima, S.

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc. 40(3), 277–288 (2009).
[Crossref]

Emplit, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Eustace, D.

Fan, S.

Faulds, K.

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Geiregat, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Graham, D.

Grimault, A.-S.

A.-S. Grimault, A. Vial, and M. L. De La Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006).
[Crossref]

Grosse, P.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Guille, A.

Hassinen, A.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Haynes, C. L.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Henkel, T.

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

K. R. Ackermann, T. Henkel, and J. Popp, “Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System,” ChemPhysChem 8(18), 2665–2670 (2007).
[Crossref] [PubMed]

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Hens, Z.

S. Bisschop, A. Guille, D. Van Thourhout, Z. Hens, and E. Brainis, “Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides,” Opt. Express 23(11), 13713–13724 (2015).
[Crossref] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Hochberg, M.

Im, H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Ismail, N.

Jones, L.

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Jun, Y.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Kekatpure, R.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Kim, H. C.

Kodate, K.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

Köhler, M.

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

Komai, Y.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

Komorowska, K.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Kronfeldt, H. D.

T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
[Crossref]

Kurtulus, O.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Lee, S. H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Lerondel, G.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Li, Q.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Li, Z.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Lindquist, N. C.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Lipson, M.

Lucht, S.

T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
[Crossref]

McNay, G.

Meyer, A. F.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Murphy, T.

T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
[Crossref]

Oh, S.-H.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Pollnau, M.

Popp, J.

K. R. Ackermann, T. Henkel, and J. Popp, “Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System,” ChemPhysChem 8(18), 2665–2670 (2007).
[Crossref] [PubMed]

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

Puppels, G. J.

Ren, B.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Rösch, P.

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

Ruan, F.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Salas-Montiel, R.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Scherer, A.

Schmidt, H.

T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
[Crossref]

Sedaghat, Z.

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

Sengo, G.

Shakya, J.

Shanmukh, S.

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 2(2), 236–250 (1996).
[Crossref]

Smith, W. E.

Strehle, K. R.

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

Sun, F.

Tian, Z.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Tripp, R. A.

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 2(2), 236–250 (1996).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Van Thourhout, D.

S. Bisschop, A. Guille, D. Van Thourhout, Z. Hens, and E. Brainis, “Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides,” Opt. Express 23(11), 13713–13724 (2015).
[Crossref] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Veronis, G.

Vial, A.

A.-S. Grimault, A. Vial, and M. L. De La Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006).
[Crossref]

Walker, C.

White, J.

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Wittenberg, N. J.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Wörhoff, K.

Xu, H.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Yang, Z.

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

Zeiri, L.

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc. 40(3), 277–288 (2009).
[Crossref]

Zhao, Y.-P.

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

S. Shanmukh, L. Jones, Y.-P. Zhao, J. D. Driskell, R. A. Tripp, and R. A. Dluhy, “Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques,” Anal. Bioanal. Chem. 390(6), 1551–1555 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

K. R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, and J. Popp, “A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system,” Anal. Chem. 79(4), 1542–1547 (2007).
[Crossref] [PubMed]

Appl. Phys. B (1)

A.-S. Grimault, A. Vial, and M. L. De La Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B 84(1-2), 111–115 (2006).
[Crossref]

Appl. Phys. Lett. (2)

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett. 100(23), 231109 (2012).
[Crossref]

Appl. Spectrosc. (1)

ChemPhysChem (1)

K. R. Ackermann, T. Henkel, and J. Popp, “Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System,” ChemPhysChem 8(18), 2665–2670 (2007).
[Crossref] [PubMed]

Chin. Sci. Bull. (1)

Z. Yang, Q. Li, F. Ruan, Z. Li, B. Ren, H. Xu, and Z. Tian, “FDTD for plasmonics: Applications in enhanced Raman spectroscopy,” Chin. Sci. Bull. 55(24), 2635–2642 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

S.-L. Chuang, “Application of the strongly coupled-mode theory to integrated optical devices,” IEEE J. Quantum Electron. 23(5), 499–509 (1987).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 2(2), 236–250 (1996).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[Crossref]

J. Raman Spectrosc. (2)

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc. 40(3), 277–288 (2009).
[Crossref]

T. Murphy, S. Lucht, H. Schmidt, and H. D. Kronfeldt, “Surface ‐ enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea‐water,” J. Raman Spectrosc. 31(10), 943–948 (2000).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Nano Lett. (1)

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes, “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13(24), 11551–11567 (2011).
[Crossref] [PubMed]

Phys. Rev. B (1)

Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008).
[Crossref]

Other (2)

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

N. Ismail, A. C. Baclig, P. J. Caspers, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “Design of low-loss arrayed waveguide gratings for applications in integrated Raman spectroscopy,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2010), paper CFA7.
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (351 KB)      Excitation of plasmon in Part 3
» Visualization 2: MP4 (2343 KB)      Radiation of one dipole in Part 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Layout of the SERS sensor: (a) Cross section of the hybrid waveguide, where a square-section Si3N4 strip of side SD is located at a distance Dis under a square-section gold slot of side Sm deposited on the silica substrate. (b) Sensor frame, where the L-length gold slot is laid above the embedded Si3N4 strip.
Fig. 2
Fig. 2 Diagrams of coupling in the hybrid waveguide with Sm = 40 nm, Dis = 20 nm, SD = 200 nm and λ = 720 nm: (a) Even mode shown with real part of Ex with REI = 2.584 + 0.0755i and (b) Odd mode shown with real part of Ex with REI = 1.381 + 0.00195i. The inserts present their phase profiles, respectively symmetric and anti-symmetric. (c) Beating of | Ex | (normalized to the source) in a y-z cross section with x = 20 nm.
Fig. 3
Fig. 3 Simulations of the basic SERS processes: excitation and radiation with Sm = 48 nm, Dis = 10 nm, SD = 200 nm and L = 0.61 μm: (a) Side view of the sensor, where the insert shows the incident light field i.e. the fundamental TE mode of the Si3N4 strip in the excitation simulation. (b) Front view of the sensor, where one induced Raman dipole is located at (23 nm, 22 nm, 0.805 μm) in the radiation simulation and its orientation is marked by the red arrow. (c) | E | distribution in an x-y cross section at z = 0.805 μm. (d) | E | distribution in a x-y cross section at z = 1.3 μm. (e) Enhancement factors for the induced Raman dipole, whose position is given in (b). The movies of |E| in the two processes can be found in Visualization 1 and Visualization 2.
Fig. 4
Fig. 4 Modal analysis of the hybrid waveguide with λ = 720 nm: (a) Real(ERI) of both isolated (black curves) and hybrid modes (colorful curves) are plotted as function of the slot size Sm for several spacings while SD = 250 nm. (b) Real(ERI) of both isolated (black curves) and hybrid modes (colorful curves) are plotted as function of the strip size SD for several spacings while Sm = 40 nm. The symbol real returns the real part of a complex number.
Fig. 5
Fig. 5 Modal analysis of the even mode of the hybrid waveguide at λ = 720 nm: (a) Imag(ERI) of the even mode are plotted as function of the slot size Sm for several spacings while SD = 250 nm. (b) Imag(ERI) of the even are plotted as function of the strip size SD for several spacings while Sm = 40 nm. The symbol Imag returns the imaginary part of a complex number.
Fig. 6
Fig. 6 Coupling efficiency ηslot of energy from the strip to the slot at λ = 720 nm and z = π/(2φ): (a) as function of the slot size Sm for several spacings while SD = 250 nm. (b) as function of the strip size SD for several spacings while Sm = 40 nm.
Fig. 7
Fig. 7 Layout of the simulated structure: (a) Cross profile and (b) Side view.
Fig. 8
Fig. 8 Beating length as function of (a) the slot size Sm, (b) the strip size SD and (c) the interval distance Dis.
Fig. 9
Fig. 9 Maximum and Average of EF in the 1st beating area: - Sm/2 ≤ x ≤ Sm/2, 0 ≤ y ≤ Sm, 0.5 μm ≤ z ≤ 0.5 μm + one beating length. They are reported as function of (a, d) the slot size Sm, (b, e) the strip size SD and (c, f) the interval distance Dis.
Fig. 10
Fig. 10 Intensity of SERS signals given out by the sensor when rhodamine 6G (RH6G) or benzotriazole dye 2 (BTZ) solution is dripped into the slot. In this graph, Δ v R ¯ is Raman shift of these probes and the dotted line is the minimum detectable power of a CCD (SONY2048) of Sony, Inc.. The sensor parameters are chosen as Sm = 30 nm, SD = 200 nm and Dis = 10nm. The intensity of incident is 10mW and the wavelength is 720 nm.
Fig. 11
Fig. 11 Fluctuation of electromagnetic beating lengths obtained on different lines in the z direction while Sm = 70 nm, SD = 200 nm and Dis = 20 nm.
Fig. 12
Fig. 12 Distributions of electric field | E | on one z-y cross section in the strip with (a) Sm = 30 nm, x = 15 nm and (b) Sm = 70 nm, x = 35 nm while SD = 200 nm, Dis = 20 nm. The high frequency of field variation in the z direction is caused by the (k1 + k2)/2 term in beating where k1, k2 are the wave vectors of the even mode and the odd mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L B e a t i n g = λ / Re a l ( E R I e v e n E R I o d d )
a ( z ) = [ cos ( φ z ) + i Δ φ sin ( φ z ) ] e i ϕ z
b ( z ) = i K b a φ sin ( φ z ) e i ϕ z
η s l o t = Re [ ( C 21 a + b ) ( C 12 * a * + b * ) ]

Metrics