Abstract

The effect of annealing cycle on regeneration efficiency was investigated through isothermal treatments between 700 and 1000°C. We determined an inverse relationship between the recovery rate of the peak reflectivity and temperature. A regeneration efficiency of 85.2% and long-term stability at 1000°C for 500 hours were achieved via a slow regeneration process. Thermal sensors developed by isothermal regeneration were determined to be reliable up to 1000°C (±2 °C). Experimental findings suggest the involvement of both diffusion related phenomena and stress variation through densification of the fiber core in type-I FBG during the thermal regeneration process.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers

Kai Lu, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Pan Zhang, Qin Tian, Xiangzi Ding, and Xueguang Qiao
Appl. Opt. 57(24) 6971-6975 (2018)

Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers

Patrik Holmberg, Fredrik Laurell, and Michael Fokine
Opt. Express 23(21) 27520-27535 (2015)

Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation

Yuhua Li, Minwei Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan
Opt. Express 17(22) 19785-19790 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  2. L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
    [Crossref]
  3. D. Barrera and S. Sales, “A high-temperature fiber sensor using a low cost interrogation scheme,” Sensors 13(9), 11653–11659 (2013).
    [Crossref] [PubMed]
  4. A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
    [Crossref] [PubMed]
  5. D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
    [Crossref]
  6. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
    [Crossref] [PubMed]
  7. E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
    [Crossref] [PubMed]
  8. A. Gillooly, “Photosensitive fibres: growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
    [Crossref]
  9. M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
    [Crossref]
  10. D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
    [Crossref]
  11. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (2011).
  12. F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
    [Crossref]
  13. P. Holmberg, F. Laurell, and M. Fokine, “Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers,” Opt. Express 23(21), 27520–27535 (2015).
    [Crossref] [PubMed]
  14. J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. 4, 09052 (2009).
    [Crossref]
  15. K. Cook, L. Y. Shao, and J. Canning, “Regeneration and helium: Regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
    [Crossref]
  16. T. Wang, L. Y. Shao, J. Canning, and K. Cook, “Regeneration of fiber Bragg gratings under strain,” Appl. Opt. 52(10), 2080–2085 (2013).
    [Crossref] [PubMed]
  17. Y. K. Cheong, W. Y. Chong, S. S. Chong, K. S. Lim, and H. Ahmad, “Regenerated type-IIa fibre Bragg grating from a Ge-B codoped fibre via thermal activation,” Opt. Laser Technol. 62, 69–72 (2014).
    [Crossref]
  18. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sens. 8(10), 6448–6452 (2008).
    [Crossref]
  19. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  20. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  21. J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
    [Crossref]
  22. K. E. Chisholm, K. Sugden, and I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre,” J. Phys. D Appl. Phys. 31(1), 61–64 (1998).
    [Crossref]
  23. S. Pal, J. Mandal, T. Sun, and K. T. V. Grattan, “Analysis of thermal decay and prediction of operational lifetime for a type I boron-germanium codoped fiber Bragg grating,” Appl. Opt. 42(12), 2188–2197 (2003).
    [Crossref] [PubMed]
  24. M. H. Lai, K. S. Lim, D. S. Gunawardena, H. Z. Yang, W. Y. Chong, and H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett. 40(5), 748–751 (2015).
    [Crossref] [PubMed]
  25. K. S. Lim, H. Z. Yang, W. Y. Chong, Y. K. Cheong, C. H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
    [Crossref] [PubMed]
  26. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [Crossref]
  27. S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B-Ge co-doped fiber,” Opt. Commun. 262(1), 68–76 (2006).
    [Crossref]
  28. G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
    [Crossref]
  29. V. Grubsky, D. Starodubov, and W. W. Morey, “High-temperature Bragg gratings in germanosilicate fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Technical Digest (Optical Society of America, 2003), paper MB5.
  30. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, “Bragg gratings written in Sn-Er-Ge-codoped silica fiber: investigation of photosensitivity, thermal stability, and sensing potential,” J. Opt. Soc. Am. A 21(8), 1503–1511 (2004).
    [Crossref] [PubMed]
  31. Y. Zhou and Z. Gu, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38-39), 4030–4033 (2006).
    [Crossref]
  32. D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
    [Crossref]
  33. L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  34. L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
    [Crossref]
  35. L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2,” Phys. Rev. B Condens. Matter 52(21), 15208–15216 (1995).
    [Crossref] [PubMed]
  36. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27(12), 1016–1018 (2002).
    [Crossref] [PubMed]
  37. M. Fokine, “Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers,” Opt. Lett. 27(22), 1974–1976 (2002).
    [Crossref] [PubMed]

2015 (4)

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

P. Holmberg, F. Laurell, and M. Fokine, “Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers,” Opt. Express 23(21), 27520–27535 (2015).
[Crossref] [PubMed]

M. H. Lai, K. S. Lim, D. S. Gunawardena, H. Z. Yang, W. Y. Chong, and H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett. 40(5), 748–751 (2015).
[Crossref] [PubMed]

2014 (3)

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Y. K. Cheong, W. Y. Chong, S. S. Chong, K. S. Lim, and H. Ahmad, “Regenerated type-IIa fibre Bragg grating from a Ge-B codoped fibre via thermal activation,” Opt. Laser Technol. 62, 69–72 (2014).
[Crossref]

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

2013 (5)

D. Barrera and S. Sales, “A high-temperature fiber sensor using a low cost interrogation scheme,” Sensors 13(9), 11653–11659 (2013).
[Crossref] [PubMed]

A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
[Crossref] [PubMed]

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

T. Wang, L. Y. Shao, J. Canning, and K. Cook, “Regeneration of fiber Bragg gratings under strain,” Appl. Opt. 52(10), 2080–2085 (2013).
[Crossref] [PubMed]

K. S. Lim, H. Z. Yang, W. Y. Chong, Y. K. Cheong, C. H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
[Crossref] [PubMed]

2012 (3)

K. Cook, L. Y. Shao, and J. Canning, “Regeneration and helium: Regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

2011 (3)

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
[Crossref] [PubMed]

A. Gillooly, “Photosensitive fibres: growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
[Crossref]

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

2009 (2)

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. 4, 09052 (2009).
[Crossref]

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

2008 (2)

2006 (2)

S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B-Ge co-doped fiber,” Opt. Commun. 262(1), 68–76 (2006).
[Crossref]

Y. Zhou and Z. Gu, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38-39), 4030–4033 (2006).
[Crossref]

2004 (1)

2003 (1)

2002 (3)

1998 (2)

L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

K. E. Chisholm, K. Sugden, and I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre,” J. Phys. D Appl. Phys. 31(1), 61–64 (1998).
[Crossref]

1995 (1)

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2,” Phys. Rev. B Condens. Matter 52(21), 15208–15216 (1995).
[Crossref] [PubMed]

1994 (2)

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Ahmad, H.

Ali, N. M.

Aslund, M.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. 4, 09052 (2009).
[Crossref]

Bandyopadhyay, S.

Barba, D.

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Barrera, D.

D. Barrera and S. Sales, “A high-temperature fiber sensor using a low cost interrogation scheme,” Sensors 13(9), 11653–11659 (2013).
[Crossref] [PubMed]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Bartelt, H.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Baxter, G. W.

Becker, M.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Bennion, I.

K. E. Chisholm, K. Sugden, and I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre,” J. Phys. D Appl. Phys. 31(1), 61–64 (1998).
[Crossref]

Biswas, P.

Brambilla, G.

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[Crossref]

Brueckner, S.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Bueno, A.

Bykov, D. S.

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Canning, J.

Caucheteur, C.

Celikin, M.

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

Cheong, Y. K.

Y. K. Cheong, W. Y. Chong, S. S. Chong, K. S. Lim, and H. Ahmad, “Regenerated type-IIa fibre Bragg grating from a Ge-B codoped fibre via thermal activation,” Opt. Laser Technol. 62, 69–72 (2014).
[Crossref]

K. S. Lim, H. Z. Yang, W. Y. Chong, Y. K. Cheong, C. H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
[Crossref] [PubMed]

Chicoine, M.

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

Chisholm, K. E.

K. E. Chisholm, K. Sugden, and I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre,” J. Phys. D Appl. Phys. 31(1), 61–64 (1998).
[Crossref]

Chojetztki, C.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Chong, S. S.

Y. K. Cheong, W. Y. Chong, S. S. Chong, K. S. Lim, and H. Ahmad, “Regenerated type-IIa fibre Bragg grating from a Ge-B codoped fibre via thermal activation,” Opt. Laser Technol. 62, 69–72 (2014).
[Crossref]

Chong, W. Y.

Collins, S. F.

Cook, K.

Coradin, F. K.

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

Dasgupta, K.

De Oliveira, V.

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

Dussardier, B.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Euser, T. G.

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Fabris, J. L.

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

Fenton, J.

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. 4, 09052 (2009).
[Crossref]

Finazzi, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Fokine, M.

Gillooly, A.

A. Gillooly, “Photosensitive fibres: growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
[Crossref]

Grattan, K. T. V.

Gu, Z.

Y. Zhou and Z. Gu, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38-39), 4030–4033 (2006).
[Crossref]

Gunawardena, D. S.

Guo, J. T.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Haddad, É.

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

He, S.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Holmberg, P.

Kalinowski, H. J.

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

Kinet, D.

Lai, M. H.

Laurell, F.

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Lim, C. H.

Lim, K. S.

Lindner, E.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Mandal, J.

Martin, F.

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Mégret, P.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Monnom, G.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Muller, M.

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

Nguyen, Q.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

Nicklaus, M.

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Pal, S.

Polz, L.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

Pruneri, V.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Rosei, F.

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Rothhardt, M.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Roths, J.

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

Ruediger, A.

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Russell, P. S. J.

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Rutt, H.

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[Crossref]

Sales, S.

D. Barrera and S. Sales, “A high-temperature fiber sensor using a low cost interrogation scheme,” Sensors 13(9), 11653–11659 (2013).
[Crossref] [PubMed]

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Schiettekatte, F.

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

Schmidt, O. A.

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Shao, L. Y.

Skuja, L.

L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2,” Phys. Rev. B Condens. Matter 52(21), 15208–15216 (1995).
[Crossref] [PubMed]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
[Crossref]

Stevenson, M.

Sugden, K.

K. E. Chisholm, K. Sugden, and I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre,” J. Phys. D Appl. Phys. 31(1), 61–64 (1998).
[Crossref]

Sun, T.

Suzuki, T.

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2,” Phys. Rev. B Condens. Matter 52(21), 15208–15216 (1995).
[Crossref] [PubMed]

Tagziria, K.

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

Tanimura, K.

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2,” Phys. Rev. B Condens. Matter 52(21), 15208–15216 (1995).
[Crossref] [PubMed]

Tong, W. J.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Tu, F.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Villatoro, J.

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

Vlekken, J.

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Wade, S. A.

Wang, T.

Xue, W.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Yang, H. Z.

Zhang, A. P.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Zhou, B.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Zhou, Y.

Y. Zhou and Z. Gu, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38-39), 4030–4033 (2006).
[Crossref]

Zhu, J. J.

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Brambilla and H. Rutt, “Fiber Bragg gratings with enhanced thermal stability,” Appl. Phys. Lett. 80(18), 3259–3261 (2002).
[Crossref]

IEEE Sens. J. (1)

D. Barrera, V. Finazzi, J. Villatoro, S. Sales, and V. Pruneri, “Packaged optical sensors based on regenerated fiber bragg gratings for high temperature applications,” IEEE Sens. J. 12(1), 107–112 (2012).
[Crossref]

J. Appl. Phys. (2)

D. Barba, F. Martin, K. Tagziria, M. Nicklaus, É. Haddad, F. Rosei, and A. Ruediger, “Photoluminescence mapping of oxygen-defect emission for nanoscale spatial characterization of fiber Bragg gratings,” J. Appl. Phys. 116(6), 064906 (2014).
[Crossref]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

J. Eur. Opt. Soc. (1)

J. Canning, S. Bandyopadhyay, M. Stevenson, P. Biswas, J. Fenton, and M. Aslund, “Regenerated gratings,” J. Eur. Opt. Soc. 4, 09052 (2009).
[Crossref]

J. Mater. Res. (1)

M. Celikin, D. Barba, A. Ruediger, M. Chicoine, F. Schiettekatte, and F. Rosei, “Co-mediated nucleation of erbium/silicon nanoclusters in fused silica,” J. Mater. Res. 30(20), 3003–3010 (2015).
[Crossref]

J. Microw. Optoelectron. Electromagn. Appl. (1)

F. K. Coradin, V. De Oliveira, M. Muller, H. J. Kalinowski, and J. L. Fabris, “Long-term stability decay of standard and regenerated Bragg gratings tailored for high temperature operation,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 719–729 (2013).
[Crossref]

J. Non-Cryst. Solids (3)

L. Skuja, “Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids 179, 51–69 (1994).
[Crossref]

Y. Zhou and Z. Gu, “The study of removing hydroxyl from silica glass,” J. Non-Cryst. Solids 352(38-39), 4030–4033 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

K. E. Chisholm, K. Sugden, and I. Bennion, “Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre,” J. Phys. D Appl. Phys. 31(1), 61–64 (1998).
[Crossref]

Nat. Photonics (2)

A. Gillooly, “Photosensitive fibres: growing gratings,” Nat. Photonics 5(8), 468–469 (2011).
[Crossref]

D. S. Bykov, O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Flying particle sensors in hollow-core photonic crystal fibre,” Nat. Photonics 9(7), 461–465 (2015).
[Crossref]

Opt. Commun. (3)

L. Polz, Q. Nguyen, H. Bartelt, and J. Roths, “Fiber Bragg gratings in hydrogen-loaded photosensitive fiber with two regeneration regimes,” Opt. Commun. 313, 128–133 (2014).
[Crossref]

J. J. Zhu, A. P. Zhang, B. Zhou, F. Tu, J. T. Guo, W. J. Tong, S. He, and W. Xue, “Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers,” Opt. Commun. 284(12), 2808–2811 (2011).
[Crossref]

S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B-Ge co-doped fiber,” Opt. Commun. 262(1), 68–76 (2006).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

Y. K. Cheong, W. Y. Chong, S. S. Chong, K. S. Lim, and H. Ahmad, “Regenerated type-IIa fibre Bragg grating from a Ge-B codoped fibre via thermal activation,” Opt. Laser Technol. 62, 69–72 (2014).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

L. Skuja, T. Suzuki, and K. Tanimura, “Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2,” Phys. Rev. B Condens. Matter 52(21), 15208–15216 (1995).
[Crossref] [PubMed]

Sens. (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sens. 8(10), 6448–6452 (2008).
[Crossref]

Sensors (2)

D. Barrera and S. Sales, “A high-temperature fiber sensor using a low cost interrogation scheme,” Sensors 13(9), 11653–11659 (2013).
[Crossref] [PubMed]

E. Lindner, C. Chojetztki, S. Brueckner, M. Becker, M. Rothhardt, J. Vlekken, and H. Bartelt, “Arrays of regenerated fiber bragg gratings in non-hydrogen-loaded photosensitive fibers for high-temperature sensor networks,” Sensors 9(10), 8377–8381 (2009).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Other (3)

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (2011).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

V. Grubsky, D. Starodubov, and W. W. Morey, “High-temperature Bragg gratings in germanosilicate fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Technical Digest (Optical Society of America, 2003), paper MB5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for high temperature in situ reflectivity measurements.
Fig. 2
Fig. 2 λB change during step by step annealing cycle and during isothermal holding at 900 °C (figure inset)
Fig. 3
Fig. 3 The variation of ∆ωB and ρ during thermal regeneration process.
Fig. 4
Fig. 4 (a-f) show the comparison between the measured Bragg peaks intensity (ρB) with that obtained from the amplitude of the index modulation determined from independent measurements of ωB and λB.
Fig. 5
Fig. 5 (a) shows the plots of regeneration recovery (%) vs. Tfinal, and ∆λ vs. Tfinal (b) thermal regeneration at Tfinal = 700 °C (ρ vs. time).
Fig. 6
Fig. 6 (a) Superior long-term stability of (b) RFBG-I compared to RFBG-II at 1000 °C. (c) Decrease in recovery (%) as shown with arrows upon long-term heat exposure at 1000 °C. (d) Calibration curves of RFBG-I sensor (26 °C to 1000 °C)
Fig. 7
Fig. 7 Plot of ln (τrec) vs. 1000/T covering the all temperature range (700-1000°C).
Fig. 8
Fig. 8 PL spectra and optical images obtained before and after thermal regeneration process at 775 °C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λB = 2neffΛ
ρB=tan h 2 ( πηΔnmN 2neff )
ωBΔnmλB
Δneff=neff( λi λf 1 )
σz= 2Δneff 3C2+C1
χ= Dt
Alnt= E kBT

Metrics