Abstract

We utilize the recently demonstrated orders of magnitude enhancement of extremely nondegenerate two-photon absorption in direct-gap semiconductor photodiodes to perform scanned imaging of three-dimensional (3D) structures using IR femtosecond illumination pulses (1.6 µm and 4.93 µm) gated on the GaN detector by sub-gap, femtosecond pulses. While transverse resolution is limited by the usual imaging criteria, the longitudinal or depth resolution can be less than a wavelength, dependent on the pulsewidths in this nonlinear interaction within the detector element. The imaging system can accommodate a wide range of wavelengths in the mid-IR and near-IR without the need to modify the detection and imaging systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nondegenerate two-photon absorption in zinc blende semiconductors

D. C. Hutchings and E. W. Van Stryland
J. Opt. Soc. Am. B 9(11) 2065-2074 (1992)

Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]

Claudiu M. Cirloganu, Lazaro A. Padilha, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland
Opt. Express 19(23) 22951-22960 (2011)

Measurement of pulse asymmetry by three-photon-absorption autocorrelation in a GaAsP photodiode

Patrick Langlois and Erich P. Ippen
Opt. Lett. 24(24) 1868-1870 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  2. A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
    [Crossref]
  3. B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
    [Crossref] [PubMed]
  4. Y. Wang, Y. Wang, and H. Le, “Multi-spectral mid-infrared laser stand-off imaging,” Opt. Express 13(17), 6572–6586 (2005).
    [Crossref] [PubMed]
  5. M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
    [Crossref]
  6. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
    [Crossref] [PubMed]
  7. S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
    [Crossref]
  8. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
    [Crossref] [PubMed]
  9. P. Martyniuk and A. Rogalski, “Infrared physics & technology MWIR barrier detectors versus HgCdTe photodiodes,” Infrared Phys. Technol. 70, 125–128 (2015).
    [Crossref]
  10. A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [Crossref]
  11. W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
    [Crossref] [PubMed]
  12. J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27(23), 2076–2078 (2002).
    [Crossref] [PubMed]
  13. F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
    [Crossref]
  14. D. C. Hutchings and E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9(11), 2065–2074 (1992).
    [Crossref]
  15. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  16. C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
    [Crossref] [PubMed]
  17. D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
    [Crossref]
  18. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  19. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93(7), 071104 (2008).
    [Crossref]
  20. J. Pelc, C. R. Phillips, C. Langrock, Q. Zhang, L. Ma, O. Slattery, X. Tang, and M. M. Fejer, “Single-photon detection at 1550 nm via upconversion using a tunable long-wavelength pump source,” in CLEO (2011), paper CMC4.
  21. G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
    [Crossref] [PubMed]
  22. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
    [Crossref] [PubMed]
  23. P. S. Kuo, O. Slattery, Y.-S. Kim, J. S. Pelc, M. M. Fejer, and X. Tang, “Spectral response of an upconversion detector and spectrometer,” Opt. Express 21(19), 22523–22531 (2013).
    [Crossref] [PubMed]
  24. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
    [Crossref] [PubMed]
  25. X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
    [Crossref]
  26. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
    [Crossref]
  27. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1(1), 67 (1984).
    [Crossref]
  28. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10(10), 490–492 (1985).
    [Crossref] [PubMed]
  29. J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
    [Crossref]

2015 (1)

P. Martyniuk and A. Rogalski, “Infrared physics & technology MWIR barrier detectors versus HgCdTe photodiodes,” Infrared Phys. Technol. 70, 125–128 (2015).
[Crossref]

2014 (2)

2013 (3)

2012 (3)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
[Crossref]

M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

2011 (4)

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
[Crossref] [PubMed]

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

2010 (2)

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

2009 (3)

F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

2008 (1)

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93(7), 071104 (2008).
[Crossref]

2007 (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

2002 (1)

1992 (1)

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1985 (1)

1984 (1)

Albota, M. A.

Anderson, T.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Antoszewski, J.

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Bhargava, R.

M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Boitier, F.

F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
[Crossref]

Bors, K. A.

S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
[Crossref]

Brown, R. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Cambrey, A. D.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Chang, E. W.

Chen, H.

Chen, L.

Chen, X.

Cho, A.

Choi, J.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Christodoulides, D. N.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

Cirloganu, C. M.

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

Cockburn, J. W.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Colley, C. S.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Delpy, D. T.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Dherbecourt, J.-B.

F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
[Crossref]

Ding, R.

Faraone, L.

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Fejer, M. M.

Fishman, D. A.

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

Gisin, N.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93(7), 071104 (2008).
[Crossref]

Gmachl, C.

Gmachl, C. F.

S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
[Crossref]

Godard, A.

F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
[Crossref]

Gu, X.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Guo, B.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Hagan, D. J.

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

He, L.

Hebden, J. C.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Hu, W.

Huang, K.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Hutchings, D. C.

D. C. Hutchings and E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9(11), 2065–2074 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Khoo, I. C.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

Kim, Y.-S.

Kirillin, M.

Kuo, P. S.

Langrock, C.

Le, H.

Lee, K.-S.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Li, Y.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Liakat, S.

S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
[Crossref]

Liao, L.

Lu, W.

Luo, G.

Ma, L.

Martyniuk, P.

P. Martyniuk and A. Rogalski, “Infrared physics & technology MWIR barrier detectors versus HgCdTe photodiodes,” Infrared Phys. Technol. 70, 125–128 (2015).
[Crossref]

Mattsson, L.

Member, A.

M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Member, S.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Michel, A. P. M.

S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
[Crossref]

Monroe, M.

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

Murphy, T. E.

Ng, W. H.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Padilha, L. A.

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

Pan, H.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Pan, J.-W.

Peabody, M.

Pedersen, C.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Pelc, J. S.

Peng, C.

Phillips, C. R.

Reddy, R. K.

M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Richardson, M. C.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Rogalski, A.

P. Martyniuk and A. Rogalski, “Infrared physics & technology MWIR barrier detectors versus HgCdTe photodiodes,” Infrared Phys. Technol. 70, 125–128 (2015).
[Crossref]

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Rolland, J. P.

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

Rosencher, E.

F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
[Crossref]

Roth, J. M.

Salamo, G. J.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

Seddon, A. B.

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
[Crossref]

Sergeeva, E.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Shentu, G.-L.

Sivco, D.

Slattery, O.

Soileau, M. J.

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

Su, R.

Sun, Q.-C.

Tang, X.

Thew, R. T.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93(7), 071104 (2008).
[Crossref]

Tidemand-Lichtenberg, P.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Van Stryland, E. W.

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

D. C. Hutchings and E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9(11), 2065–2074 (1992).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10(10), 490–492 (1985).
[Crossref] [PubMed]

Vanherzeele, H.

Walsh, M. J.

M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Wang, X.-D.

Wang, Y.

Webster, S.

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

Wherrett, B. S.

Wilson, L. R.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Wong, F. N. C.

Woodall, M. A.

Wu, E.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Xu, C.

Ye, Z.

Yun, S. H.

Zbinden, H.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93(7), 071104 (2008).
[Crossref]

Zeng, H.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Zhang, H.

Zhang, Q.

Zheng, M.-Y.

Zibik, E. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60 (2010).
[Crossref]

Appl. Phys. Lett. (4)

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93(7), 071104 (2008).
[Crossref]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

S. Liakat, A. P. M. Michel, K. A. Bors, and C. F. Gmachl, “Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue,” Appl. Phys. Lett. 101(9), 093705 (2012).
[Crossref]

F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Choi, K.-S. Lee, J. P. Rolland, T. Anderson, and M. C. Richardson, “Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy,” Appl. Phys., A Mater. Sci. Process. 104(1), 289–294 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, and S. Member, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Walsh, R. K. Reddy, R. Bhargava, and A. Member, “Label-free biomedical imaging with mid-IR spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1502–1513 (2012).
[Crossref]

Infrared Phys. Technol. (1)

P. Martyniuk and A. Rogalski, “Infrared physics & technology MWIR barrier detectors versus HgCdTe photodiodes,” Infrared Phys. Technol. 70, 125–128 (2015).
[Crossref]

J. Appl. Phys. (1)

A. Rogalski, J. Antoszewski, L. Faraone, A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (3)

D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5(9), 561–565 (2011).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Express (7)

Y. Wang, Y. Wang, and H. Le, “Multi-spectral mid-infrared laser stand-off imaging,” Opt. Express 13(17), 6572–6586 (2005).
[Crossref] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
[Crossref] [PubMed]

C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Opt. Express 19(23), 22951–22960 (2011).
[Crossref] [PubMed]

G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
[Crossref] [PubMed]

P. S. Kuo, O. Slattery, Y.-S. Kim, J. S. Pelc, M. M. Fejer, and X. Tang, “Spectral response of an upconversion detector and spectrometer,” Opt. Express 21(19), 22523–22531 (2013).
[Crossref] [PubMed]

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref] [PubMed]

B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Status Solidi (1)

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Other (1)

J. Pelc, C. R. Phillips, C. Langrock, Q. Zhang, L. Ma, O. Slattery, X. Tang, and M. M. Fejer, “Single-photon detection at 1550 nm via upconversion using a tunable long-wavelength pump source,” in CLEO (2011), paper CMC4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic representation of the ND-2PA process for photons having different energies. The violet color represents the large photon energy and the red color represents the smaller photon energy. (b) Possible transition paths in ND-2PA for a two-band structure consisting of interband (straight line) and intraband (circle) transitions.
Fig. 2
Fig. 2 Experimental configuration for single pixel scanning 3-D IR imaging.
Fig. 3
Fig. 3 (a) Photograph of the dime. (b) Cross-correlation curves for two different points on the dime. (c) 3-D image of the dime taken at 1600 nm.
Fig. 4
Fig. 4 (a) Photograph of the object ‘80’. (b) 3-D reflectance image of the object, (c) 2-D reflectance image of the object. (d) 2-D reflectance image using a PbSe detector in staring mode. The kinks in images (b) and (c) at y = 17.75 mm is due to the malfunction of the raster scanning stage.
Fig. 5
Fig. 5 (a) Photograph of the GaAs semiconductor structure. The squared region shows the raster scanned area (b) Sketch describing the raster scanning carried out from the substrate side.
Fig. 6
Fig. 6 (a) 3-D image of the portion of the structure scanned for the 3-D imaging. (b) Cross-correlation signal corresponding to the position ‘A’ and ‘B’.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dN dt = dN dt | ND + dN dt | D =2 α 2 ND ( ω s ; ω g ) I g I s ω s + α 2 D ( ω g ; ω g ) I g 2 ω g ,
α 2 ND ( ω s ; ω g )=K E p n s n g E g 3 F 2 ND ( ω s E g ; ω g E g ),
α 2 D ( ω g ; ω g )=K E p n g 2 E g 3 F 2 ND ( ω g E g , ω g E g ),
Δz=± 1 4 ln2 ln( 1+σ ) τ FWHM c,

Metrics