Abstract

A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
7kW direct-liquid-cooled side-pumped Nd:YAG multi-disk laser resonator

Ke Wang, Bo Tu, Chunyan Jia, Jianli Shang, Xiangchao An, Yuan Liao, Zhi Xu, Jingwei Guo, Jiayu Yi, Yi Yu, Hua Su, Qingsong Gao, Xiaojun Wang, Wanfa Liu, and Kai Zhang
Opt. Express 24(13) 15012-15020 (2016)

9 kilowatt-level direct-liquid-cooled Nd:YAG multi-module QCW laser

Jiayu Yi, Bo Tu, Xiangchao An, Xu Ruan, Jing Wu, Hua Su, Jianli Shang, Yi Yu, Yuan Liao, Haixia Cao, Lingling Cui, Qingsong Gao, and Kai Zhang
Opt. Express 26(11) 13915-13926 (2018)

3kW liquid–cooled elastically-supported Nd:YAG multi-slab CW laser resonator

Xing Fu, Peilin Li, Qiang Liu, and Mali Gong
Opt. Express 22(15) 18421-18432 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
    [Crossref]
  2. X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
    [Crossref] [PubMed]
  3. J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
    [Crossref]
  4. P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
    [Crossref]
  5. A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThH2.
    [Crossref]
  6. X. Fu, Q. Liu, P. Li, L. Huang, and M. Gong, “Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator,” Opt. Express 23(14), 18458–18470 (2015).
    [Crossref] [PubMed]
  7. X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
    [Crossref]
  8. P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
    [Crossref]
  9. P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
    [Crossref]
  10. R. D. Mehta and P. Bradshaw, “Design rules for small low-speed wind tunnels,” Aeronaut. J. 83(827), 443–449 (1979).
  11. G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
    [Crossref]
  12. P. M. Ligrani and R. D. Niver, “Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio,” Phys. Fluids 31(12), 3605–3617 (1988).
    [Crossref]
  13. L. S. Han, “Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts,” J. Appl. Mech. 27(3), 403–409 (1960).
    [Crossref]
  14. P. Moonen, B. Blocken, and J. Carmeliet, “Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel,” J. Wind Eng. Ind. Aerodyn. 95(9–11), 1289–1314 (2007).
    [Crossref]
  15. R. D. Mehta, “The aerodynamic design of blower tunnels with wide-angle diffusers,” Prog. Aerosp. Sci. 18, 59–120 (1979).
    [Crossref]
  16. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
    [Crossref]
  17. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
    [Crossref]
  18. R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
    [Crossref]
  19. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
    [Crossref]
  20. Y. H. Peng, Y. X. Lim, J. Cheng, Y. Guo, Y. Y. Cheah, and K. S. Lai, “Near fundamental mode 1.1 kW Yb:YAG thin-disk laser,” Opt. Lett. 38(10), 1709–1711 (2013).
    [Crossref] [PubMed]
  21. W. Koechner, Solid-State Lasers Engineering (Springer, 2006).
  22. X. Peng, L. Xu, and A. Asundi, “High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser,” Appl. Opt. 44(5), 800–807 (2005).
    [Crossref] [PubMed]
  23. Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).
  24. P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, and L. A. Gizzi, “3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment,” Opt. Express 22(5), 5375–5386 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
[Crossref] [PubMed]

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, and L. A. Gizzi, “3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment,” Opt. Express 22(5), 5375–5386 (2014).
[Crossref] [PubMed]

2013 (4)

2007 (1)

P. Moonen, B. Blocken, and J. Carmeliet, “Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel,” J. Wind Eng. Ind. Aerodyn. 95(9–11), 1289–1314 (2007).
[Crossref]

2006 (2)

P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
[Crossref]

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

2005 (2)

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

1999 (1)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[Crossref]

1998 (1)

G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
[Crossref]

1992 (1)

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

1988 (1)

P. M. Ligrani and R. D. Niver, “Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio,” Phys. Fluids 31(12), 3605–3617 (1988).
[Crossref]

1979 (2)

R. D. Mehta and P. Bradshaw, “Design rules for small low-speed wind tunnels,” Aeronaut. J. 83(827), 443–449 (1979).

R. D. Mehta, “The aerodynamic design of blower tunnels with wide-angle diffusers,” Prog. Aerosp. Sci. 18, 59–120 (1979).
[Crossref]

1960 (1)

L. S. Han, “Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts,” J. Appl. Mech. 27(3), 403–409 (1960).
[Crossref]

Adrian, R. J.

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

Asundi, A.

Blocken, B.

P. Moonen, B. Blocken, and J. Carmeliet, “Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel,” J. Wind Eng. Ind. Aerodyn. 95(9–11), 1289–1314 (2007).
[Crossref]

P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
[Crossref]

Bradshaw, P.

R. D. Mehta and P. Bradshaw, “Design rules for small low-speed wind tunnels,” Aeronaut. J. 83(827), 443–449 (1979).

Cai, Z.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Carmeliet, J.

P. Moonen, B. Blocken, and J. Carmeliet, “Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel,” J. Wind Eng. Ind. Aerodyn. 95(9–11), 1289–1314 (2007).
[Crossref]

P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
[Crossref]

Cheah, Y. Y.

Cheng, J.

Ciofini, M.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

De Ponte, S.

G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
[Crossref]

Diana, G.

G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
[Crossref]

Esposito, L.

Falco, M.

G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
[Crossref]

Ferrara, P.

Fu, X.

Gao, Q.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Gizzi, L. A.

Gong, M.

Guo, Y.

Han, L. S.

L. S. Han, “Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts,” J. Appl. Mech. 27(3), 403–409 (1960).
[Crossref]

Hostaša, J.

Huang, L.

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Keane, R. D.

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

Labate, L.

Lai, K. S.

Lapucci, A.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Li, F.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Li, P.

Ligrani, P. M.

P. M. Ligrani and R. D. Niver, “Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio,” Phys. Fluids 31(12), 3605–3617 (1988).
[Crossref]

Lim, Y. X.

Liu, C.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Liu, Q.

Mehta, R. D.

R. D. Mehta, “The aerodynamic design of blower tunnels with wide-angle diffusers,” Prog. Aerosp. Sci. 18, 59–120 (1979).
[Crossref]

R. D. Mehta and P. Bradshaw, “Design rules for small low-speed wind tunnels,” Aeronaut. J. 83(827), 443–449 (1979).

Meinhart, C. D.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[Crossref]

Min, J. C.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Moonen, P.

P. Moonen, B. Blocken, and J. Carmeliet, “Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel,” J. Wind Eng. Ind. Aerodyn. 95(9–11), 1289–1314 (2007).
[Crossref]

P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
[Crossref]

Nie, R.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Niver, R. D.

P. M. Ligrani and R. D. Niver, “Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio,” Phys. Fluids 31(12), 3605–3617 (1988).
[Crossref]

Peng, B.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Peng, X.

Peng, Y. H.

Pirri, A.

Roels, S.

P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
[Crossref]

Santiago, J. G.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[Crossref]

Shang, J.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

She, J.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Song, Y. Z.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Tang, C.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Toci, G.

Tu, B.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Vannini, M.

Wang, J. R.

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Wang, K.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Wang, X.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Wereley, S. T.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[Crossref]

Xu, L.

Ye, Z.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Yu, Y.

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Zasso, A.

G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
[Crossref]

Zhao, P.

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Aeronaut. J. (1)

R. D. Mehta and P. Bradshaw, “Design rules for small low-speed wind tunnels,” Aeronaut. J. 83(827), 443–449 (1979).

Appl. Opt. (1)

Appl. Phys. B (1)

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

Appl. Sci. Res. (1)

R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

Appl. Therm. Eng. (1)

J. R. Wang, J. C. Min, and Y. Z. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Chin. Opt. Lett. (1)

Exp. Fluids (2)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27(5), 414–419 (1999).
[Crossref]

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

J. Appl. Mech. (1)

L. S. Han, “Hydrodynamic entrance lengths for incompressible laminar flow in rectangular ducts,” J. Appl. Mech. 27(3), 403–409 (1960).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Wind Eng. Ind. Aerodyn. (3)

P. Moonen, B. Blocken, and J. Carmeliet, “Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed-circuit wind tunnel,” J. Wind Eng. Ind. Aerodyn. 95(9–11), 1289–1314 (2007).
[Crossref]

G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” J. Wind Eng. Ind. Aerodyn. 74–76, 553–565 (1998).
[Crossref]

P. Moonen, B. Blocken, S. Roels, and J. Carmeliet, “Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel,” J. Wind Eng. Ind. Aerodyn. 94(10), 699–723 (2006).
[Crossref]

Laser Phys. Lett. (1)

R. Nie, J. She, P. Zhao, F. Li, and B. Peng, “Fully immersed liquid cooling thin-disk oscillator,” Laser Phys. Lett. 11(11), 115808 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Fluids (1)

P. M. Ligrani and R. D. Niver, “Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio,” Phys. Fluids 31(12), 3605–3617 (1988).
[Crossref]

Proc. SPIE (1)

Z. Ye, Z. Cai, B. Tu, X. Wang, J. Shang, Y. Yu, K. Wang, Q. Gao, C. Tang, and C. Liu, “Numerical approach to temperature and thermal stress in direct-liquid-cooled Nd: YAG thin disk laser medium,” Proc. SPIE 9255, 92550T (2014).

Prog. Aerosp. Sci. (1)

R. D. Mehta, “The aerodynamic design of blower tunnels with wide-angle diffusers,” Prog. Aerosp. Sci. 18, 59–120 (1979).
[Crossref]

Other (2)

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThH2.
[Crossref]

W. Koechner, Solid-State Lasers Engineering (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Experimental setup of the direct-RIML-cooled Nd:YLF thin disk resonator. LD, laser diode; CL, cylindrical lenses; W, planar waveguide; IS, imaging system; M1, M2, dichroic mirrors; HR, high reflector; OC, output coupler. GM, gain module.
Fig. 2
Fig. 2 Pump (fluorescence) profile in the middle of the gain module.
Fig. 3
Fig. 3 (a) Schematic view of the gain module, (b) the top view of the gain module, and (c) the details of a flow channel.
Fig. 4
Fig. 4 A test facility is built with the structure being similar to that in Fig. 3(c).
Fig. 5
Fig. 5 The velocity distributions in the laser disk zone with the Reynolds number values of 1979 (u = 2 m/s), 2969 (u = 3 m/s), 3959 (u = 4m/s) and 4949 (u = 5m/s).
Fig. 6
Fig. 6 The schematic diagram of (a) experimental system for measuring the temperature on the surface of thin film resistor; (b) the measured temperature distribution on the thermal camera, the detailed distribution in dashed box is shown in Fig. 7.
Fig. 7
Fig. 7 The measured temperature distribution: (a) on the surface of the thin film resistor; (b) in the flow direction (y) down the centreline (x = 9 mm) with different flow velocities.
Fig. 8
Fig. 8 The pump absorption efficiency and doping concentration in the ten disks.
Fig. 9
Fig. 9 The recorded power with laser output lasting from 0 s to 15 s.
Fig. 10
Fig. 10 Output power with different output couplers.
Fig. 11
Fig. 11 Near-field intensity distribution of the laser beam.
Fig. 12
Fig. 12 Output power with different flow velocities.
Fig. 13
Fig. 13 Measured wavefront of HeNe beam passing through the gain module (with subtracted defocus and tilt).

Tables (2)

Tables Icon

Table 1 The parameters of the RIML

Tables Icon

Table 2 List of the maximum pump power the gain module can sustain with different flow velocities

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Re = u L v
L = 4 S χ
h = q T q d λ 0 T f

Metrics