Abstract

We designed and fabricated free-standing, waveguide-coupled silicon nitride microdisks hybridly integrated with embedded colloidal quantum dots. An efficient coupling of quantum dot emission to resonant disk modes and eventually to the access waveguides is demonstrated. The amount of light coupled out to the access waveguide can be tuned by controlling its dimensions and offset with the disk edge. These devices open up new opportunities for both on-chip silicon nitride integrated photonics and novel optoelectronic devices with quantum dots.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide-integrated microdisk light-emitting diode and photodetector based on Ge quantum dots

Xuejun Xu, Takuya Maruizumi, and Yasuhiro Shiraki
Opt. Express 22(4) 3902-3910 (2014)

Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide

Hyunho Jung, Myungjae Lee, Changhyun Han, Yeonsang Park, Kyung-Sang Cho, and Heonsu Jeon
Opt. Express 25(26) 32919-32930 (2017)

Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics

Mohammad Soltani, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 15(8) 4694-4704 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [Crossref] [PubMed]
  2. M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
    [Crossref]
  3. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21(15), 18236–18248 (2013).
    [Crossref] [PubMed]
  4. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  5. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
    [Crossref]
  6. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [Crossref] [PubMed]
  7. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  8. X. Tu, J. Song, T. Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
    [Crossref] [PubMed]
  9. A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
    [Crossref] [PubMed]
  10. A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
    [Crossref]
  11. S. Gupta and E. Waks, “Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity,” Opt. Express 21(24), 29612–29619 (2013).
    [Crossref] [PubMed]
  12. B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
    [Crossref]
  13. W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
    [Crossref] [PubMed]
  14. W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
    [Crossref]
  15. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  16. M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
    [Crossref]
  17. W. Xie and D. Van Thourhout, “Fabrication of high-Q Silicon nitride microdisk resonator coupled with on-chip waveguide,” Proceedings Symposium IEEE Photonics Society Benelux, 145–148 (2014).

2015 (1)

2014 (2)

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

2013 (5)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21(15), 18236–18248 (2013).
[Crossref] [PubMed]

S. Gupta and E. Waks, “Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity,” Opt. Express 21(24), 29612–29619 (2013).
[Crossref] [PubMed]

2012 (2)

X. Tu, J. Song, T. Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20(3), 2640–2648 (2012).
[Crossref] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

2011 (1)

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
[Crossref]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

2009 (2)

Adibi, A.

Atabaki, A. H.

Aubert, T.

W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
[Crossref] [PubMed]

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

Baets, R.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Biermann, A.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Brainis, E.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Cirillo, M.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

De Geyter, B.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

De Vittorio, M.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Dhakal, A.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Du Bois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Eftekhar, A. A.

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Emplit, P.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Epifani, G.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Finkelstein, H.

Fiore, A.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Geiregat, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Ghulinyan, M.

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
[Crossref]

Gomes, R.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Grande, M.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Guider, R.

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
[Crossref]

Gupta, S.

Hassinen, A.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Hens, Z.

W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
[Crossref] [PubMed]

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

Hosseini, E. S.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kee, J. S.

Komorowska, K.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Lange, H.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Le Thomas, N.

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Li, Q.

Liow, T. Y.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Lo, G. Q.

Martiradonna, L.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Merget, F.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Park, M. K.

Passaseo, A.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Pavesi, L.

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
[Crossref]

Peyskens, F.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Pisanello, F.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Pucker, G.

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
[Crossref]

Qualtieri, A.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Romero-García, S.

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Sodagar, M.

Soltani, M.

Song, J.

Stomeo, T.

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Subramanian, A. Z.

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Thomsen, C.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Tu, X.

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Van Deun, R.

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Van Thourhout, D.

W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
[Crossref] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

W. Xie and D. Van Thourhout, “Fabrication of high-Q Silicon nitride microdisk resonator coupled with on-chip waveguide,” Proceedings Symposium IEEE Photonics Society Benelux, 145–148 (2014).

Verstuyft, S.

Waks, E.

Witzens, J.

Wuytens, P.

Xia, Z.

Xie, W.

W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
[Crossref] [PubMed]

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

W. Xie and D. Van Thourhout, “Fabrication of high-Q Silicon nitride microdisk resonator coupled with on-chip waveguide,” Proceedings Symposium IEEE Photonics Society Benelux, 145–148 (2014).

Yegnanarayanan, S.

Yiying, J. Q.

Yu, M.

Zhong, F.

Zhu, Y.

W. Xie, Y. Zhu, T. Aubert, S. Verstuyft, Z. Hens, and D. Van Thourhout, “Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots,” Opt. Express 23(9), 12152–12160 (2015).
[Crossref] [PubMed]

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

Appl. Phys. Lett. (1)

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Chem. Mater. (1)

M. Cirillo, T. Aubert, R. Gomes, R. Van Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, and Z. Hens, “‘Flash’ synthesis of CdSe/CdS core-shell quantum dots,” Chem. Mater. 26(2), 1154–1160 (2014).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Photonics J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photonics Technol. Lett. 23(16), 1166–1168 (2011).
[Crossref]

Microelectron. Eng. (1)

A. Qualtieri, F. Pisanello, M. Grande, T. Stomeo, L. Martiradonna, G. Epifani, A. Fiore, A. Passaseo, and M. De Vittorio, “Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities,” Microelectron. Eng. 87(5–8), 1435–1438 (2010).
[Crossref]

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nature (1)

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Other (2)

W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. Van Thourhout, “On-chip hybrid integration of silicon nitride microdisk with colloidal quantum dots,” 2015 IEEE International Conference on Group IV Photonics, 159–160 (2015).
[Crossref]

W. Xie and D. Van Thourhout, “Fabrication of high-Q Silicon nitride microdisk resonator coupled with on-chip waveguide,” Proceedings Symposium IEEE Photonics Society Benelux, 145–148 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-sectional view of SiN disk with embedded QDs vertically coupled with on-chip waveguide. (b) Simulated cross-sectional field profiles of radial component (Er) and intensity (|E|2) for the fundamental TE mode in suspended disk with a 7 μm diameter. (c) Simulated Q factor (mode wavelength ~625 nm) as a function of coupling gap for a 7 μm diameter disk with 170nm thickness. The red arrow indicates the gap of 200 nm used in our devices.
Fig. 2
Fig. 2 Schematics of SiN-QD hybrid device fabrication flow. (a) Definition of SiN waveguide. (b, c) SiO2 cladding deposition and CMP Planarization. (d, e) Deposition of aSi gap layer and SiN-QD-SiN films, and definition of SiN-QD disk. (f) Coating and patterning of protective layer. (g, h) Undercut etching of aSi and cleaning of protective layer.
Fig. 3
Fig. 3 (a) A set of optical images of fabricated devices with different disk diameters. All images have the same scale bar of 10 μm as shown in the first left-top image. (b) SEM image of a device with a 7 μm diameter disk. (c) FIB cross-sectional image of the disk taken along the dashed red line in (b). (d) SEM image of the tilted view of the disk sidewall area indicated with dashed red box in (b).
Fig. 4
Fig. 4 (a, b) Normalized PL spectra of the devices coupled to ~500 nm wide waveguides with an offset of −160 nm, for disk diameters of 7 and 15 μm, respectively. The insets at the right side of (a) and left side of (b) show the fitted Q factors for representative fundamental WGM modes as denoted by the red arrows. The right-side inset in (b) shows the PL spectrum collected on top of the disk for comparison. (c) PL spectra of QDs in solution and in SiN slab. (d) Measured and simulated FSR values and fitted Q factors for different diameter (D) disks. For a fair comparison, both FSR and Q are calculated for the modes around ~622 nm, and Q factors are measured for the devices with ~500 nm waveguide width and −160 nm offset.
Fig. 5
Fig. 5 (a, b) PL intensity spectra of the devices with a disk diameter of 10 μm and a 500 nm wide bus waveguide but under different offsets of −60 nm and −160nm, respectively, together with Q-factors for the central peaks denoted by the red arrows. (c) The simulated offset-dependent coupling efficiency (η) between fundamental the TE waveguide mode and the fundamental TE WGM modes in the disk with a diameter of 10μm. (d, e) Normalized PL spectra of the devices with a disk diameter of 20 μm and an offset of −160 nm but under different bus waveguide widths of 500 nm and 650nm, respectively. The insets show the zoom-in spectra for the selected regions as indicated with the red-dashed boxes. The red and blue arrows in the insets designate the 1st and 2nd order mode families, respectively. (f) The simulated waveguide width-dependent coupling efficiency between fundamental TE waveguide mode and 1st and 2nd order TE WGM modes in the disk with a diameter of 20μm.

Metrics