Abstract

When violet or green pulses were launched into an elastomer containing photochromic diarylethene, two competitive absorption bands emerged at around 400 and 520 nm. The violet pulses suppressed the former and enhanced the latter, whereas the green pulses induced the opposite reaction. Consequently, these signals self-formed their optical path in the elastomer (self-enhancement). By contrast, blue pulses exhibited either a self-enhancement or suppression characteristic depending on whether the elastomer had been irradiated by the violet or green signal before the blue signal transmission. Measurement of the transient spectra during the irradiation process revealed that the blue photons were absorbed by both 400 and 520 nm bands inducing two competitive photochromic isomerizations simultaneously.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fade-resistant photochromic reactions in a self-healable polymer

Mitsunori Saito, Tatsuya Nishimura, and Takamasa Hamazaki
Opt. Express 23(20) 25523-25531 (2015)

Photoinduced reversible optical gratings in photochromic diarylethene-doped polymeric thin films

Stefano Cattaneo, Steve Lecomte, Christian Bosshard, Germano Montemezzani, Peter Günter, Robert C. Livingston, and François Diederich
J. Opt. Soc. Am. B 19(9) 2032-2038 (2002)

Photochromic polymers for the optical homodyne detection of ultrasonic surface displacements

Ulrich Gubler, Daniel Wright, W. E. Moerner, and Marvin B. Klein
Opt. Lett. 27(5) 354-356 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
    [Crossref] [PubMed]
  2. M. Jorfi, G. Voirin, E. J. Foster, and C. Weder, “Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics,” Opt. Lett. 39(10), 2872–2875 (2014).
    [Crossref] [PubMed]
  3. S. Kawata and A. Hirose, “Coherent optical neural network that learns desirable phase values in the frequency domain by use of multiple optical-path differences,” Opt. Lett. 28(24), 2524–2526 (2003).
    [Crossref] [PubMed]
  4. M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett. 36(2), 208–210 (2011).
    [Crossref] [PubMed]
  5. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13(12), 2824–2832 (1996).
    [Crossref]
  6. L. Qiu and K. Saravanamuttu, “Optical self-trapping in a photopolymer doped with Ag nanoparticles: a single-step route to metallodielectric cylindrical waveguides,” J. Opt. Soc. Am. B 29(5), 1085–1093 (2012).
    [Crossref]
  7. E. Tolstik, O. Romanov, V. Matusevich, A. Tolstik, and R. Kowarschik, “Formation of self-trapping waveguides in bulk PMMA media doped with Phenanthrenequinone,” Opt. Express 22(3), 3228–3233 (2014).
    [Crossref] [PubMed]
  8. T. Yoshimura, M. Iida, and H. Nawata, “Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials,” Opt. Lett. 39(12), 3496–3499 (2014).
    [Crossref] [PubMed]
  9. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18(13), 1035–1037 (1993).
    [Crossref] [PubMed]
  10. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
    [Crossref]
  11. A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
    [Crossref]
  12. K. Yamashita, M. Ito, S. Sugimoto, T. Morishita, and K. Oe, “Optically end-pumped plastic waveguide laser with in-line Fabry-Pérot resonator,” Opt. Express 18(23), 24092–24100 (2010).
    [Crossref] [PubMed]
  13. A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
    [Crossref]
  14. P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24(21), 1508–1510 (1999).
    [Crossref] [PubMed]
  15. E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
    [Crossref]
  16. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
    [Crossref] [PubMed]
  17. M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
    [Crossref]
  18. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
    [Crossref] [PubMed]
  19. M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
    [Crossref]
  20. M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chem. Rev. 114(24), 12174–12277 (2014).
    [Crossref] [PubMed]
  21. M. Saito, T. Nishimura, and T. Hamazaki, “Fade-resistant photochromic reactions in a self-healable polymer,” Opt. Express 23(20), 25523–25531 (2015).
    [Crossref] [PubMed]
  22. H. Takei and N. Shimizu, “Optical device with excitatory and inhibitory optical outputs,” Opt. Lett. 21(7), 537–539 (1996).
    [Crossref] [PubMed]
  23. D. P. Shelton, “Bacteriorhodopsin optoelectronic synapses,” Opt. Lett. 22(22), 1728–1730 (1997).
    [Crossref] [PubMed]
  24. S. A. Kandjani, R. Barille, S. Dabos-Seignon, J.-M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
    [Crossref] [PubMed]
  25. M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
    [Crossref]
  26. M. Saito and S. Ochiai, “Stabilization of photochromic isomers by copper nanoparticles in a high-diffusivity solid matrix,” Opt. Lett. 39(18), 5366–5369 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (5)

2013 (1)

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (2)

K. Yamashita, M. Ito, S. Sugimoto, T. Morishita, and K. Oe, “Optically end-pumped plastic waveguide laser with in-line Fabry-Pérot resonator,” Opt. Express 18(23), 24092–24100 (2010).
[Crossref] [PubMed]

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

2007 (3)

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
[Crossref]

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

2005 (1)

2004 (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

2000 (1)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

1997 (1)

1996 (2)

1993 (1)

Alonzo, M.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Argiolas, N.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Assanto, G.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Barille, R.

Bazzan, M.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Bekker, A.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

Berger, N. K.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

Bernasconi, P.

Birabassov, R.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
[Crossref]

Boyden, E. S.

Chauvet, M.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Dabos-Seignon, S.

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

de Sterke, C. M.

Devaux, F.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Dittrich, P.

Fazio, E.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Fischer, B.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

Fonstad, C. G.

Foster, E. J.

Frisken, S. J.

Fujiuchi, A.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Fukaminato, T.

M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chem. Rev. 114(24), 12174–12277 (2014).
[Crossref] [PubMed]

Galstian, T.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
[Crossref]

Günter, P.

Hamazaki, T.

Hirose, A.

Horowitz, M.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

Iida, M.

Irie, M.

M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chem. Rev. 114(24), 12174–12277 (2014).
[Crossref] [PubMed]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

Ito, M.

Jorfi, M.

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

Kanatani, K.

Kandjani, S. A.

Kawata, S.

Kobatake, S.

M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chem. Rev. 114(24), 12174–12277 (2014).
[Crossref] [PubMed]

Kowarschik, R.

Kucharski, S.

Matsuda, K.

M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chem. Rev. 114(24), 12174–12277 (2014).
[Crossref] [PubMed]

Matusevich, V.

Monro, T. M.

Montemezzani, G.

Morishita, T.

Nawata, H.

Nishimura, T.

Nunzi, J.-M.

Ochiai, S.

Oe, K.

Okamoto, R.

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

Ortyl, E.

Ota, N.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Peccianti, M.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Peda’el, A.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

Poladian, L.

Qiu, L.

Romanov, O.

Sada, C.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Saito, M.

M. Saito, T. Nishimura, and T. Hamazaki, “Fade-resistant photochromic reactions in a self-healable polymer,” Opt. Express 23(20), 25523–25531 (2015).
[Crossref] [PubMed]

M. Saito and S. Ochiai, “Stabilization of photochromic isomers by copper nanoparticles in a high-diffusivity solid matrix,” Opt. Lett. 39(18), 5366–5369 (2014).
[Crossref] [PubMed]

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett. 36(2), 208–210 (2011).
[Crossref] [PubMed]

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Sakiyama, K.

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

Saravanamuttu, K.

Scholvin, J.

Shelton, D. P.

Shimizu, N.

Sugimoto, S.

Takeda, R.

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

Takei, H.

Tolstik, A.

Tolstik, E.

Toncelli, A.

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

Tork, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
[Crossref]

Tsubokura, Y.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Voirin, G.

Weder, C.

Yamada, I.

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

Yamashita, K.

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

Yoshimura, K.

M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett. 36(2), 208–210 (2011).
[Crossref] [PubMed]

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

Yoshimura, T.

Zohrabyan, A.

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
[Crossref]

Zorzos, A. N.

Appl. Phys. Lett. (6)

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79(8), 1079–1081 (2001).
[Crossref]

A. Zohrabyan, A. Tork, R. Birabassov, and T. Galstian, “Self-written gradient double claddlike optical guiding channels of high stability,” Appl. Phys. Lett. 91(11), 111912 (2007).
[Crossref]

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, and B. Fischer, “Optically induced domain waveguides in SrxBa1–xNb2O6 crystals,” Appl. Phys. Lett. 72(24), 3121–3123 (1998).
[Crossref]

E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, “Luminescence-induced photorefractive spatial solitons,” Appl. Phys. Lett. 96(9), 091107 (2010).
[Crossref]

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett. 91(14), 141110 (2007).
[Crossref]

Chem. Rev. (2)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

M. Irie, T. Fukaminato, K. Matsuda, and S. Kobatake, “Photochromism of diarylethene molecules and crystals: memories, switches, and actuators,” Chem. Rev. 114(24), 12174–12277 (2014).
[Crossref] [PubMed]

J. Opt. (1)

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (11)

M. Jorfi, G. Voirin, E. J. Foster, and C. Weder, “Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics,” Opt. Lett. 39(10), 2872–2875 (2014).
[Crossref] [PubMed]

T. Yoshimura, M. Iida, and H. Nawata, “Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials,” Opt. Lett. 39(12), 3496–3499 (2014).
[Crossref] [PubMed]

M. Saito and S. Ochiai, “Stabilization of photochromic isomers by copper nanoparticles in a high-diffusivity solid matrix,” Opt. Lett. 39(18), 5366–5369 (2014).
[Crossref] [PubMed]

A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
[Crossref] [PubMed]

M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett. 36(2), 208–210 (2011).
[Crossref] [PubMed]

D. P. Shelton, “Bacteriorhodopsin optoelectronic synapses,” Opt. Lett. 22(22), 1728–1730 (1997).
[Crossref] [PubMed]

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24(21), 1508–1510 (1999).
[Crossref] [PubMed]

H. Takei and N. Shimizu, “Optical device with excitatory and inhibitory optical outputs,” Opt. Lett. 21(7), 537–539 (1996).
[Crossref] [PubMed]

S. Kawata and A. Hirose, “Coherent optical neural network that learns desirable phase values in the frequency domain by use of multiple optical-path differences,” Opt. Lett. 28(24), 2524–2526 (2003).
[Crossref] [PubMed]

S. A. Kandjani, R. Barille, S. Dabos-Seignon, J.-M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
[Crossref] [PubMed]

S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18(13), 1035–1037 (1993).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Open- and closed-ring structures of the diarylethene molecule. Violet or green light irradiation raises the molecules to the excited state and induces the isomerization that accompanies a color change (photographs). (b) Transmission spectra of the open- and closed-ring states of the photochromic elastomer (3 mm thickness). Three arrows at the bottom show signal wavelengths that are used in the current experiments.
Fig. 2
Fig. 2 (a, b) Cross-section and front-view (photograph) of the sample holder. A signal laser beam propagates back and forth in the thin sample (3 mm thickness) to extend the optical path. (c) Optical setup for evaluation of the self-enhancement and suppression of the signal pulses.
Fig. 3
Fig. 3 Temporal change of the optical signal that passed through the sample (path length: 10 mm). (a) A violet signal (wavelength: 405 nm, peak power: 4 mW, pulse period: 1 ms) began to irradiate the sample of the open-ring state at t = 0 s. The upper waves show magnification of the lower signal. (b) A green signal (532 nm, 4 mW, 1 ms) irradiated the sample of the closed-ring state. (c) A blue signal (450 nm, 4 mW, 1 ms) irradiated the sample of the open-ring state. (d) Output signals that were measured in a period between t and t + Δt (t: time after the start of irradiation) during the irradiation process of the blue pulses.
Fig. 4
Fig. 4 (a) Self-suppression and (b) self-enhancement of the output signal intensity. The blue pulses (peak power: 4 mW, pulse period: 1 ms) passed through the sample (path length: 17 mm) of the (a) open-ring or (b) closed-ring state.
Fig. 5
Fig. 5 (a) Optical density spectra of the sample (thickness: 3 mm). The bottom (open-ring, 0 s) and top (closed-ring, 0 s) spectra correspond to the two transmission spectra in Fig. 1(b). Blue laser irradiation (0.03 mW/mm2) caused spectral change for both open- and closed-ring states, as exemplified by the two spectra in the midway (60 s). Both spectra merged into a single spectrum (equilibrium) after ~300 s. (b) Deconvolution of the top spectra in (a), i.e., the optical density of the closed-ring state. The thin lines show four component peaks and the dotted line shows their sum. (c) Deconvolution of the bottom spectra in (a), i.e., the optical density of the open-ring state. (d) Deconvolution of the middle spectra in (a), i.e., the optical density of the equilibrium state. (e) Peak heights of the absorption bands C and O as functions of the optical density at the blue laser wavelength (450 nm). (f) Optical density at 450 nm that is induced by the peak C or O. Their sum coincides with the value of the horizontal axis.

Metrics