Abstract

A low-loss hollow core terahertz waveguide based on Kagome photonic crystal structure has been designed and fabricated by 3D printing. The 3D printed waveguide has been characterized by using THz time-domain spectroscopy. The results demonstrate that the obtained waveguide features average power propagation loss of 0.02 cm−1 for 0.2-1.0 THz (the minimum is about 0.002 cm−1 at 0.75 THz). More interesting, it could be simply mechanically spliced without any additional alignment, while maintaining the excellent performance. The 3D printing technique will be a promising solution to fabricate Kagome THz waveguide with well controllable characteristics and low cost.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz pulse propagation in 3D-printed waveguide with metal wires component

Nurfina Yudasari, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 22(21) 26042-26054 (2014)

Metallic and 3D-printed dielectric helical terahertz waveguides

Dominik Walter Vogt, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 23(26) 33359-33369 (2015)

3D-printed polymer antiresonant waveguides for short-reach terahertz applications

L. D. van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti
Appl. Opt. 57(14) 3953-3958 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
    [Crossref]
  3. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  4. Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse propagation in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).
  5. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [Crossref]
  6. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref] [PubMed]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  8. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18(7), 7415–7420 (2010).
    [Crossref] [PubMed]
  9. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
    [Crossref]
  10. A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
    [Crossref]
  11. S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
    [Crossref]
  12. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
    [Crossref]
  13. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [Crossref] [PubMed]
  14. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [Crossref] [PubMed]
  15. S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
    [Crossref]
  16. Z. Wu, W. R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
    [Crossref] [PubMed]
  17. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
    [Crossref]
  18. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  19. B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39(21), 6245–6248 (2014).
    [Crossref] [PubMed]
  20. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
    [Crossref]
  21. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref] [PubMed]
  22. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  23. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  24. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
    [Crossref] [PubMed]
  25. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
    [Crossref] [PubMed]
  26. C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
    [Crossref]
  27. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
    [Crossref]
  28. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36(1), 467–495 (2006).
    [Crossref]
  29. E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
    [Crossref]
  30. Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
    [Crossref] [PubMed]
  31. S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013).
    [Crossref] [PubMed]
  32. N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
    [Crossref] [PubMed]
  33. D. W. Vogt, J. Anthony, and R. Leonhardt, “Metallic and 3D-printed dielectric helical terahertz waveguides,” Opt. Express 23(26), 33359–33369 (2015).
    [Crossref] [PubMed]
  34. J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
    [Crossref]
  35. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [Crossref]
  36. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [Crossref] [PubMed]
  37. A. D. Yablans, Optical Fiber Fusion Splicing (Springer-Verilog Press, 2005).
  38. L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
    [Crossref]
  39. J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).
  40. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
    [Crossref] [PubMed]
  41. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]

2016 (2)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

2015 (5)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

D. W. Vogt, J. Anthony, and R. Leonhardt, “Metallic and 3D-printed dielectric helical terahertz waveguides,” Opt. Express 23(26), 33359–33369 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

2012 (1)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse propagation in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

2011 (5)

2010 (2)

2009 (1)

2008 (3)

2007 (4)

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
[Crossref] [PubMed]

2006 (3)

2004 (3)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

2001 (1)

2000 (1)

1992 (1)

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

Abbott, D.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

Abeeluck, A. K.

Afshar, S.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Afshar V, S.

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

Agrawal, G. P.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

Alharbi, M.

Anthony, J.

Argyros, A.

Arrington, C. L.

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Atakaramians, S.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Barh, A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

Bastiaans, G. J.

Benabid, F.

Benoît, A.

Blondy, J.-M.

Brancazio, D.

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

Chang, H. C.

Chang, H.-C.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Chen, H. W.

Chen, H.-T.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Chen, H.-W.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Chen, J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
[Crossref] [PubMed]

Chen, L. J.

Chen, Y.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Cima, M.

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

Cornie, J.

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

Couny, F.

Cox, F. M.

Cui, T. J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Darcie, T. E.

Debord, B.

Dontabactouny, M.

Dubois, C.

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Dupuis, A.

Ebendorff-Heidepriem, H.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36(1), 467–495 (2006).
[Crossref]

Eggleton, B. J.

Feng, Y.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[Crossref]

Gallot, G.

Gehm, M. E.

Gérôme, F.

Ghosh, D.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

Grine, A. D.

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Grischkowsky, D.

Guo, L.

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

Gupta, B.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Hassani, A.

He, S.

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

Headley, C.

Heshmat, B.

Hsueh, Y. C.

Huang, Y. J.

Jamison, S. P.

Jepsen, P. U.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Jin, B.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Kang, L.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Kao, T. F.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Kinast, J.

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

Lai, C. H.

Large, M. C. J.

Lee, M.

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Leonhardt, R.

Leon-Saval, S. G.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Liang, L.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Litchinitser, N. M.

Liu, S.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Liu, T. A.

Liu, W.

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
[Crossref]

Lu, H.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Lu, J. Y.

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Mandehgar, M.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse propagation in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

McGowan, R. W.

Mendis, R.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Monro, T. M.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36(1), 467–495 (2006).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nagel, M.

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

Nahata, A.

Ng, W. R.

Nielsen, K.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Nordquist, C. D.

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

Pahlevaninezhad, H.

Pal, B. P.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Pandey, S.

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Peng, J. L.

Qi, M.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

Rahman, B. M.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

Rasmussen, H. K.

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Roberts, P. J.

Rowen, A. M.

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Sachs, E.

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

Setti, V.

Shen, X.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Skorobogatiy, M.

Stoeffler, K.

Sun, C. K.

Sun, C.-K.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Ung, B.

Varshney, R. K.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

Vincetti, L.

Vogt, D. W.

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Wang, Y. Y.

Wang, Z.

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
[Crossref]

Wanke, M. C.

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Wheeler, N. V.

Williams, P.

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

Wu, P.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Wu, Z.

Xin, H.

Xu, W.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Yang, B.

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
[Crossref]

Yang, J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
[Crossref]

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

Yang, Y.

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse propagation in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

You, B.

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Yudasari, N.

Zhai, J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Zhang, C.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Zhang, X.-C.

Zhao, H.

Zhao, J.

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

Adv. Opt. Mater. (1)

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Adv. Opt. Photonics (1)

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Annu. Rev. Mater. Sci. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36(1), 467–495 (2006).
[Crossref]

Appl. Phys. Lett. (4)

S. Atakaramians, S. Afshar V, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

ASME J. Eng. Ind. T (1)

E. Sachs, M. Cima, P. Williams, D. Brancazio, and J. Cornie, “3-Dimensional printing-rapid tooling and prototypes directly from a CAD model,” ASME J. Eng. Ind. T 114(4), 481–488 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 8500215 (2016).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

Y. Yang, M. Mandehgar, and D. Grischkowsky, “Understanding THz pulse propagation in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).

J. Electron. Sci. Technol. (1)

J. Yang, S. He, J. Zhao, L. Guo, and W. Liu, “Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system,” J. Electron. Sci. Technol. 13(1), 2–5 (2015).

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as Terahertz waveguide,” Jpn. J. Appl. Phys. 43(2B), L317–L319 (2004).
[Crossref]

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[Crossref]

Nat. Photonics (2)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343(15), 150–156 (2015).
[Crossref]

Opt. Express (12)

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref] [PubMed]

S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013).
[Crossref] [PubMed]

N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
[Crossref] [PubMed]

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18(7), 7415–7420 (2010).
[Crossref] [PubMed]

Z. Wu, W. R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
[Crossref] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[Crossref] [PubMed]

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
[Crossref] [PubMed]

D. W. Vogt, J. Anthony, and R. Leonhardt, “Metallic and 3D-printed dielectric helical terahertz waveguides,” Opt. Express 23(26), 33359–33369 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. IEEE (1)

D. Abbott and X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Other (2)

A. D. Yablans, Optical Fiber Fusion Splicing (Springer-Verilog Press, 2005).

C. D. Nordquist, M. C. Wanke, A. M. Rowen, C. L. Arrington, M. Lee, and A. D. Grine, “Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz,” in IEEE AP-S Int. Symp. (2008), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 THz waveguide design and fabrication. (a) Cross section of the ideal waveguide design. (b) Photograph of cross sectional view of a fabricated THz waveguide. θ indicates offset angle between two waveguides. (c) Photograph of full view of three waveguides with length of 10 cm, 20 cm and 30 cm, respectively. (d) Photograph of concatenated waveguide.
Fig. 2
Fig. 2 THz waveguide characteristics. (a) Measured and simulated effective refractive index of waveguides. (b) Loss coefficients for 30 cm waveguide (using transmission through 10 cm waveguide as reference). Black line, experiment data when humidity was about 35%. Blue line, experiment data when humidity was about 10%. Red line, simulation. Green lines, high loss frequencies.
Fig. 3
Fig. 3 Spliced waveguide characteristics. (a) Loss coefficients of a single waveguide and a spliced waveguide with the same length. (b) Loss coefficients of a spliced waveguide with aligned, 20° and 40° misaligned core boundaries.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n sam = Δφc ωl + n ref
α= 1 l ln( I ref / I sam )+ 2 l ln( 4 n sam / ( n sam + n ref ) 2 )
f m = mc 2t n 2 1

Metrics