Abstract

We present a new principle for tuning the diffraction efficiency of an optical grating and its implementation in a micro-optical device. The overlap of two phase gratings is used to vary the effective phase shift and hence the diffraction efficiency. We study the working principle using Fourier Optics to simulate the diffraction pattern in the far field and design and realize a device based on integrated piezo actuation. We find good agreement between simulation and experiment and observe a suppression of the first diffraction order intensity by more than 97% and response times of less than 3 ms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetically tunable optical diffraction gratings based on a ferromagnetic liquid crystal

S. Gao, M. Fleisch, R. A. Rupp, L. Cmok, P. Medle-Rupnik, A. Mertelj, D. Lisjak, X. Zhang, and I. Drevenšek-Olenik
Opt. Express 27(6) 8900-8911 (2019)

Tunable resonance-domain diffraction gratings based on electrostrictive polymers

Ramon Axelrod, Yosi Shacham-Diamand, and Michael A. Golub
Appl. Opt. 56(7) 1817-1825 (2017)

Long-term efficiency preservation for gradient phase metasurface diffraction gratings in the visible

Daniel K. Nikolov, Fei Cheng, Necdet Basaran, Aaron Bauer, Jannick P. Rolland, and A. Nick Vamivakas
Opt. Mater. Express 8(8) 2125-2130 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Aschwanden, M. Beck, and A. Stemmer, “Diffractive transmission grating tuned by dielectric elastomer actuator,” IEEE Photon. Technol. Lett. 19(14), 1090–1092 (2007).
    [Crossref]
  2. C. W. Wong, Y. Jeon, G. Barbastathis, and S. Kim, “Analog tunable gratings driven by thin-film piezoelectric microelectromechanical actuators,” Appl. Opt. 42(4), 621–626 (2003).
    [Crossref] [PubMed]
  3. R. A. Guerrero, S. J. C. Oliva, and J. M. M. Indias, “Fluidic actuation of an elastomeric grating,” Appl. Opt. 51(24), 5812–5817 (2012).
    [Crossref] [PubMed]
  4. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1×4 switch,” Opt. Express 16(18), 13499–13508 (2008).
    [Crossref] [PubMed]
  5. J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
    [Crossref]
  6. E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).
  7. A. Yanai and U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B 27(8), 1523–1529 (2010).
    [Crossref]
  8. M. Riahi, H. Latifi, A. Madani, and A. Moazzenzadeh, “Design and fabrication of a spatial light modulator using thermally tunable grating and a thin-film heater,” Appl. Opt. 48(30), 5647–5654 (2009).
    [Crossref] [PubMed]
  9. B. Ryba, E. Förster, and R. Brunner, “Flexible diffractive gratings: theoretical investigation of the dependency of diffraction efficiency on mechanical deformation,” Appl. Opt. 53(7), 1381–1387 (2014).
    [Crossref] [PubMed]
  10. B. A. Grzybowski, D. Qin, and G. M. Whitesides, “Beam redirection and frequency filtering with transparent elastomeric diffractive elements,” Appl. Opt. 38(14), 2997–3002 (1999).
    [Crossref]
  11. G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
    [Crossref]
  12. M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, “A reflective tunable blazed-grating for high energy femtosecond laser pulses,” in Proceedings of IEEE International Symposium on Optomechatronic Technologies (ISOT) (IEEE, 2012).
  13. F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
    [Crossref]
  14. M. Stürmer, M. C. Wapler, and U. Wallrabe, “Optical Amplitude Gratings with Tunable Diffraction Efficiency,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2016).
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

2016 (1)

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

2014 (1)

2012 (2)

R. A. Guerrero, S. J. C. Oliva, and J. M. M. Indias, “Fluidic actuation of an elastomeric grating,” Appl. Opt. 51(24), 5812–5817 (2012).
[Crossref] [PubMed]

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

2010 (2)

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

A. Yanai and U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B 27(8), 1523–1529 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

M. Aschwanden, M. Beck, and A. Stemmer, “Diffractive transmission grating tuned by dielectric elastomer actuator,” IEEE Photon. Technol. Lett. 19(14), 1090–1092 (2007).
[Crossref]

2004 (1)

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[Crossref]

2003 (1)

1999 (1)

Akram, M. N.

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

Aschwanden, M.

M. Aschwanden, M. Beck, and A. Stemmer, “Diffractive transmission grating tuned by dielectric elastomer actuator,” IEEE Photon. Technol. Lett. 19(14), 1090–1092 (2007).
[Crossref]

Barbastathis, G.

Beck, M.

M. Aschwanden, M. Beck, and A. Stemmer, “Diffractive transmission grating tuned by dielectric elastomer actuator,” IEEE Photon. Technol. Lett. 19(14), 1090–1092 (2007).
[Crossref]

Bohnert, P.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

Brunne, J.

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, “A reflective tunable blazed-grating for high energy femtosecond laser pulses,” in Proceedings of IEEE International Symposium on Optomechatronic Technologies (ISOT) (IEEE, 2012).

Brunner, R.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

B. Ryba, E. Förster, and R. Brunner, “Flexible diffractive gratings: theoretical investigation of the dependency of diffraction efficiency on mechanical deformation,” Appl. Opt. 53(7), 1381–1387 (2014).
[Crossref] [PubMed]

Campbell, K.

Carlisle, C. B.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[Crossref]

Chen, X. Y.

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

Chigrinov, V. G.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Fainman, Y.

Fan, F.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Förster, E.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

B. Ryba, E. Förster, and R. Brunner, “Flexible diffractive gratings: theoretical investigation of the dependency of diffraction efficiency on mechanical deformation,” Appl. Opt. 53(7), 1381–1387 (2014).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Groisman, A.

Grunwald, R.

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, “A reflective tunable blazed-grating for high energy femtosecond laser pulses,” in Proceedings of IEEE International Symposium on Optomechatronic Technologies (ISOT) (IEEE, 2012).

Grzybowski, B. A.

Guerrero, R. A.

Henriksen, L.

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

Indias, J. M. M.

Jeon, Y.

Kim, S.

Korvink, J.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

Kwok, H. S.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Latifi, H.

Levy, U.

Madani, A.

Moazzenzadeh, A.

Monteverde, R.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[Crossref]

Oliva, S. J. C.

Ouyang, G.

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

Pang, L.

Pauls, M.

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, “A reflective tunable blazed-grating for high energy femtosecond laser pulses,” in Proceedings of IEEE International Symposium on Optomechatronic Technologies (ISOT) (IEEE, 2012).

Qin, D.

Riahi, M.

Ryba, B.

Srivastava, A. K.

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

Stemmer, A.

M. Aschwanden, M. Beck, and A. Stemmer, “Diffractive transmission grating tuned by dielectric elastomer actuator,” IEEE Photon. Technol. Lett. 19(14), 1090–1092 (2007).
[Crossref]

Stürmer, M.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

M. Stürmer, M. C. Wapler, and U. Wallrabe, “Optical Amplitude Gratings with Tunable Diffraction Efficiency,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2016).

Trisnadi, J. I.

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[Crossref]

Wallrabe, U.

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, “A reflective tunable blazed-grating for high energy femtosecond laser pulses,” in Proceedings of IEEE International Symposium on Optomechatronic Technologies (ISOT) (IEEE, 2012).

M. Stürmer, M. C. Wapler, and U. Wallrabe, “Optical Amplitude Gratings with Tunable Diffraction Efficiency,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2016).

Wang, K.

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

Wapler, M. C.

M. Stürmer, M. C. Wapler, and U. Wallrabe, “Optical Amplitude Gratings with Tunable Diffraction Efficiency,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2016).

Whitesides, G. M.

Wong, C. W.

Yanai, A.

Zamek, S.

Adv. Opt. Tech. (1)

E. Förster, M. Stürmer, U. Wallrabe, J. Korvink, P. Bohnert, and R. Brunner, “Dual-mode spectral imaging system employing a focus variable lens,” Adv. Opt. Tech. 5(2), 167–176 (2016).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100(11), 111105 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Aschwanden, M. Beck, and A. Stemmer, “Diffractive transmission grating tuned by dielectric elastomer actuator,” IEEE Photon. Technol. Lett. 19(14), 1090–1092 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Proc. SPIE (1)

J. I. Trisnadi, C. B. Carlisle, and R. Monteverde, “Overview and applications of grating-light-valve based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[Crossref]

Sens. Actuators, A (1)

G. Ouyang, K. Wang, L. Henriksen, M. N. Akram, and X. Y. Chen, “A novel tunable grating fabricated with viscoelastic polymer (PDMS) and conductive polymer (PEDOT),” Sens. Actuators, A 158(2), 313–319 (2010).
[Crossref]

Other (3)

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, “A reflective tunable blazed-grating for high energy femtosecond laser pulses,” in Proceedings of IEEE International Symposium on Optomechatronic Technologies (ISOT) (IEEE, 2012).

M. Stürmer, M. C. Wapler, and U. Wallrabe, “Optical Amplitude Gratings with Tunable Diffraction Efficiency,” in Proceedings of IEEE International Conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2016).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic illustration of the working principle. The overlap p determines the intensity in the diffraction orders.
Fig. 2
Fig. 2 Sizes defined within one unit-cell of the grating.
Fig. 3
Fig. 3 Simulated intensity in the 0th to 2nd diffraction orders (d.o.) for optimal and measured grating depths as a function of the overlap factor p that defines the effective phase.
Fig. 4
Fig. 4 Schematic illustration of the layers of the tunable grating with integrated actuation.
Fig. 5
Fig. 5 Angle dependent intensity for a single grating element, measured and simulated.
Fig. 6
Fig. 6 (a) Result of a FEM simulation of the actuator deflection with 1125 V/mm (results only for one half of actuator, symmetric). (b) Measured deflection across that field strength range, hysteresis caused by piezo actuator.
Fig. 7
Fig. 7 (a) Diffraction pattern in the −1st to 1st diffraction order for different angles between the gratings. (b) Photograph of the final device with connections to a carrier PCB.
Fig. 8
Fig. 8 (a) −1st diffraction order intensity as a function of voltage at both actuator meanders. Dashed line indicates Vlow/Vup = 1, dotted line is the linear regression to the extrema intensities in −1st to 1st order (indicated by −, o and +). (b) Tuning contrast as a function of the spot size, for symmetric and optimized actuation voltage. Positive and negative diffraction orders are averaged, the data shows the mean value of the measurement at three different illuminated locations on the grating, errorbars indicate the standard deviation.
Fig. 9
Fig. 9 (a) −2nd to 2nd diffraction order intensities as a function of the actuation voltage between −29 V and 91 V. (b) Intensities with adapted voltage range for complete range switching. All results are normalized to the intensity of the incident beam with 2 mm width.
Fig. 10
Fig. 10 (a) Simulated intensity in the 0th to 2nd diffraction orders (d.o.) for an air gap of a = 10 µm and the measured grating depth of 386 nm as a function of the overlap factor p. (b) Shift Δp between positive and negative diffraction orders as a function of the air gap a between the two gratings. The values of the 2nd diffraction order were omitted near 20, 60 and 90 µm, as the distinct maximum disappears at these points.
Fig. 11
Fig. 11 Step response of the intensity in the −1st to 1st diffraction orders upon application of a positive (a) and negative (b) voltage step at t = 0 ms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ l ( x ) = { 0 0 x < p g 2 h ( n 1 ) p g 2 x < g 2 and g 2 + p g 2 x < g 2 h ( n 1 ) g 2 x < g 2 + p g 2
Ψ 0 ( x ) = I 0 ( x ) exp ( 2 π i Δ l ( x ) / λ )
I z = | 1 exp ( 2 π i z λ 2 x 2 ) ( Ψ 0 ( x ) ) | 2 .
l 1 = x 2 + z 2 .
l 2 = ( x Δ x ) 2 + ( z a ) 2 + a ,
2 a x 2 + z 2 2 x Δ x + 2 z a .
Δ x 1 2 x z a 1 2 θ a .

Metrics