Abstract

In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of lidar techniques to time-of-flight range imaging

Refael Whyte, Lee Streeter, Michael J. Cree, and Adrian A. Dorrington
Appl. Opt. 54(33) 9654-9664 (2015)

High-depth-resolution range imaging with multiple-wavelength superheterodyne interferometry using 1550-nm lasers

Fengqiang Li, Joshua Yablon, Andreas Velten, Mohit Gupta, and Oliver Cossairt
Appl. Opt. 56(31) H51-H56 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
    [Crossref]
  2. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2012).
  3. S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
    [Crossref]
  4. K. Kianka, “3D documentation and printing in forensics,” in Proceedings of Forensic Engineering 2015: Performance of the Built Environment (ASCE, 2015).
  5. U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot Auton. Syst. 59(5), 265–273 (2011).
    [Crossref]
  6. Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
    [Crossref]
  7. C. K. Toth, “R&D of mobile LIDAR mapping and future trends,” in Proceedings of ASPRS Annual Conference (ASPRS, 2009).
  8. S. Thrun, “Toward robotic cars,” Commun. ACM 53(4), 99–106 (2010).
    [Crossref]
  9. W. Burgard, D. Fox, and S. Thrun, “Probabilistic state estimation techniques for autonomous and decision support systems,” Informatik-Spektrum 34(5), 455–461 (2011).
    [Crossref]
  10. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.
  11. A. Wright, “Automotive autonomy,” Commun. ACM 54(7), 16–18 (2011).
    [Crossref]
  12. X. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. in Phys. Geogr. 32(1), 31–49 (2008).
    [Crossref]
  13. S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.
  14. A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
    [Crossref]
  15. J. W. Young, “Advantages of high resolution LiDAR,” LiDAR News Magazine4(6), (2014).
  16. J. Hancock, “Laser intensity-based obstacle detection and tracking,” Ph.D. thesis, Robotics Institute, Carnegie Mellon University (1999).
  17. M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  18. R. D. Richmond and S. C. Cain, Direct–Detection LADAR Systems (SPIE, 2010).
  19. P. F. McManamon, “Review of LADAR: A historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
    [Crossref]
  20. P. F. McManamon, Field Guide to Lidar (SPIE, 2015).
    [Crossref]
  21. A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
    [Crossref]
  22. S. Á. Guðmundsson, H. Aanæs, and R. Larsen, “Environmental effects on measurement uncertainties of time–of–flight cameras,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2007), vol. 1, pp. 1–4.
  23. F. Remondino and D. Stoppa, ToF Range–Imaging Cameras (Springer, 2013).
    [Crossref]
  24. HDL-64E S3 Users’ Manual and Programming Guide (Velodyne, 2013).
  25. Peregrine 3D Flash LIDAR Vision System (ASC, 2014). http://www.advancedscientificconcepts.com/products/peregrine.html .
  26. U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
    [Crossref]
  27. B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
    [Crossref]
  28. B. L. Stann, J. F. Dammann, and M. M. Giza, “Progress on MEMS–scanned Ladar,” Proc. SPIE 9832, 98320L (2016).
    [Crossref]
  29. X. Lee and C. Wang, “Optical design for uniform scanning in MEMS–based 3D imaging Lidar,” Appl. Opt. 54(9), 2219–2223 (2015).
    [Crossref] [PubMed]
  30. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
    [Crossref] [PubMed]
  31. K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
    [Crossref]
  32. F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis and applications,” IEEE Trans. Inform. Thoery 35(3), 595–604 (1989).
    [Crossref]
  33. A. S. Holmes and R. R. A. Syms, “All-optical CDMA using “Quasi-Prime” codes,” J. Lightwave Technol. 10(2), 279–286 (1992).
    [Crossref]
  34. G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).
  35. C. Goursaud-Brugeaud, A. Julien-Vergonjanne, and J.-P. Cances, “Prime code efficiency in DS–OCDMA systems using parallel interference cancellation,” J. Commun. 2(3), 51–57 (2007).
    [Crossref]
  36. A. M. Weiner, Z. Jiang, and D. E. Leaird, “Spectrally phase-coded O–CDMA,” J. Opt. Netw. 6(6), 728–755 (2007).
    [Crossref]
  37. W. C. Kwong and G.-C. Yang, Optical Coding Theory with Prime (CRC Press, 2013).
  38. P. Y. Ma, M. P. Fok, B. J. Shastri, B. Wu, and P. R. Prucnal, “Gigabit ethernet signal transmission using asynchronous optical code division multiple access,” Opt. Lett. 40(24), 5854–5857 (2015).
    [Crossref] [PubMed]
  39. P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection for embedded networks,” in Proceedings of IEEE International Conference on Dependable Systems and Networks (IEEE, 2004), pp. 145–154.
  40. J. Ho and E.-H. Yang, “Designing optimal multiresolution quantizers with error detecting codes,” IEEE Trans. Wirel. Commun. 12(7), 3588–3599 (2013).
    [Crossref]
  41. R. A. Scholtz, “The origins of spread–sprectrum communications,” IEEE Trans. Commun. 30(5), 822–854 (1982).
    [Crossref]
  42. T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, 2002).
  43. S. Haykin, Communication Systems (Wiley, 2009).
  44. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Techn. 50(3), 910–928 (2002).
    [Crossref]
  45. C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).
  46. A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D: Appl. Phys. 43(27), 273001 (2010).
    [Crossref]
  47. C. M. O’Sullivan and J. A. Murphy, Field Guide to Terahertz Sources, Detectors, and Optics (SPIE, 2012).
  48. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  49. M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. THz Sci. Technol. 5(3), 391–397 (2015).
    [Crossref]
  50. Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
    [Crossref]
  51. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
    [Crossref]
  52. H. Dong, S. Anderson, and T. D. Barfoot, “Two–axis scanning Lidar geometric calibration using intensity imagery and distortion mapping,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 3672–3678.
  53. S. T. Holmström, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. S. 23(2), 259–275 (2014).
    [Crossref]
  54. M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico–projectors: Seeing the big picture (with a small device),” Opt. Photon. News 20(5), 28–34 (2009).
    [Crossref]
  55. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33(4), 393–395 (2008).
    [Crossref] [PubMed]
  56. J. Fererici and L. Möller, “Review of terahertz and subterahertz wireless communications,” Opt. Lett. 107(11), 111101 (2010).
  57. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
    [Crossref]
  58. M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
    [Crossref]
  59. T. Nagatsuma, S. Hisatake, and H. H. N. Pham, “Photonics for millimeter-wave and terahertz sensing and measurement,” IEICE Trans. Electron. 99(2), 173–180 (2016).
    [Crossref]
  60. T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
    [Crossref]
  61. S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
    [Crossref]
  62. C. Baker, I. S. Gregory, M. J. Evans, and W. R. Tribe, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers,” Opt. Express 13(23), 9639–9644 (2005).
    [Crossref] [PubMed]
  63. B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Terahertz line detection by a microlens array coupled photoconductive antenna array,” Opt. Express 16(22), 18443–18450 (2008).
    [Crossref] [PubMed]
  64. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Küunzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, “Continuous wave terahertz systems exploiting 1.5 μm telecom technologies,” Opt. Express 17(17), 15001–15007 (2009).
    [Crossref] [PubMed]
  65. A. Hu and V. P. Chodavarapu, “CMOS optoelectronic lock-in amplifier with integrated phototransistor array,” IEEE Trans. Biomed. Circuits Syst. 4(5), 274–280 (2010).
    [Crossref]
  66. F. Grum and T. E. Wightman, “Absolute reflectance of Eastman white reflectance standard,” Appl. Opt. 16, 2775–2776 (1977).
    [Crossref] [PubMed]
  67. S. Tominaga and B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. A 6(4), 576–584 (1989).
    [Crossref]
  68. F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
    [Crossref]
  69. A. Springsteen, “Standards for the measurement of diffuse reflectance – an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380(2), 379–390 (1999).
    [Crossref]
  70. R. Sabatini and M. A. Richardson, Airborne Laser Systems Testing and Analysis (RTO of NATO, 2010).
  71. J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
    [Crossref]
  72. C. Liu and Y. Wang, “A 128–channel, 710 m samples/second, and less than 10 ps RMS resolution time–to–digital converter implemented in a Kintex–7 FPGA,” IEEE Trans. Nucl. Sci. 62(3), 773–783 (2015).
    [Crossref]
  73. A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
    [Crossref] [PubMed]
  74. Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
    [Crossref]
  75. J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, 2008).
    [Crossref]
  76. M. E. O’Brien and D. G. Fouche, “Simulation of 3D laser Radar systems,” Lincoln Laboratory Journal 15(1), 37–60 (2005).

2016 (6)

A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
[Crossref]

B. L. Stann, J. F. Dammann, and M. M. Giza, “Progress on MEMS–scanned Ladar,” Proc. SPIE 9832, 98320L (2016).
[Crossref]

T. Nagatsuma, S. Hisatake, and H. H. N. Pham, “Photonics for millimeter-wave and terahertz sensing and measurement,” IEICE Trans. Electron. 99(2), 173–180 (2016).
[Crossref]

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
[Crossref]

2015 (4)

C. Liu and Y. Wang, “A 128–channel, 710 m samples/second, and less than 10 ps RMS resolution time–to–digital converter implemented in a Kintex–7 FPGA,” IEEE Trans. Nucl. Sci. 62(3), 773–783 (2015).
[Crossref]

X. Lee and C. Wang, “Optical design for uniform scanning in MEMS–based 3D imaging Lidar,” Appl. Opt. 54(9), 2219–2223 (2015).
[Crossref] [PubMed]

P. Y. Ma, M. P. Fok, B. J. Shastri, B. Wu, and P. R. Prucnal, “Gigabit ethernet signal transmission using asynchronous optical code division multiple access,” Opt. Lett. 40(24), 5854–5857 (2015).
[Crossref] [PubMed]

M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. THz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

2014 (5)

S. T. Holmström, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. S. 23(2), 259–275 (2014).
[Crossref]

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
[Crossref]

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

2013 (5)

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

J. Ho and E.-H. Yang, “Designing optimal multiresolution quantizers with error detecting codes,” IEEE Trans. Wirel. Commun. 12(7), 3588–3599 (2013).
[Crossref]

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

2012 (4)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

P. F. McManamon, “Review of LADAR: A historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

2011 (4)

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

W. Burgard, D. Fox, and S. Thrun, “Probabilistic state estimation techniques for autonomous and decision support systems,” Informatik-Spektrum 34(5), 455–461 (2011).
[Crossref]

A. Wright, “Automotive autonomy,” Commun. ACM 54(7), 16–18 (2011).
[Crossref]

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

2010 (5)

S. Thrun, “Toward robotic cars,” Commun. ACM 53(4), 99–106 (2010).
[Crossref]

J. Fererici and L. Möller, “Review of terahertz and subterahertz wireless communications,” Opt. Lett. 107(11), 111101 (2010).

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D: Appl. Phys. 43(27), 273001 (2010).
[Crossref]

A. Hu and V. P. Chodavarapu, “CMOS optoelectronic lock-in amplifier with integrated phototransistor array,” IEEE Trans. Biomed. Circuits Syst. 4(5), 274–280 (2010).
[Crossref]

2009 (2)

2008 (4)

2007 (3)

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

C. Goursaud-Brugeaud, A. Julien-Vergonjanne, and J.-P. Cances, “Prime code efficiency in DS–OCDMA systems using parallel interference cancellation,” J. Commun. 2(3), 51–57 (2007).
[Crossref]

A. M. Weiner, Z. Jiang, and D. E. Leaird, “Spectrally phase-coded O–CDMA,” J. Opt. Netw. 6(6), 728–755 (2007).
[Crossref]

2005 (2)

2002 (1)

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Techn. 50(3), 910–928 (2002).
[Crossref]

2001 (1)

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

2000 (1)

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

1999 (1)

A. Springsteen, “Standards for the measurement of diffuse reflectance – an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380(2), 379–390 (1999).
[Crossref]

1992 (1)

A. S. Holmes and R. R. A. Syms, “All-optical CDMA using “Quasi-Prime” codes,” J. Lightwave Technol. 10(2), 279–286 (1992).
[Crossref]

1991 (1)

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
[Crossref]

1989 (2)

S. Tominaga and B. A. Wandell, “Standard surface-reflectance model and illuminant estimation,” J. Opt. Soc. Am. A 6(4), 576–584 (1989).
[Crossref]

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis and applications,” IEEE Trans. Inform. Thoery 35(3), 595–604 (1989).
[Crossref]

1982 (1)

R. A. Scholtz, “The origins of spread–sprectrum communications,” IEEE Trans. Commun. 30(5), 822–854 (1982).
[Crossref]

1977 (1)

Aanæs, H.

S. Á. Guðmundsson, H. Aanæs, and R. Larsen, “Environmental effects on measurement uncertainties of time–of–flight cameras,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2007), vol. 1, pp. 1–4.

Abellán, A.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Aikio, M.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Amann, M.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Amzajerdianb, F.

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Anderson, S.

H. Dong, S. Anderson, and T. D. Barfoot, “Two–axis scanning Lidar geometric calibration using intensity imagery and distortion mapping,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 3672–3678.

Aoyagi, I.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Askeland, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Bach, H.-G.

Baker, C.

Baran, U.

S. T. Holmström, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. S. 23(2), 259–275 (2014).
[Crossref]

Barfoot, T. D.

H. Dong, S. Anderson, and T. D. Barfoot, “Two–axis scanning Lidar geometric calibration using intensity imagery and distortion mapping,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 3672–3678.

Barsanti, S. G.

S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
[Crossref]

Baumstarck, P.

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.

Becker, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Benecke, W.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Bennamoun, M.

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Biber, P.

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

Bosch, T.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bulyshev, A.

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Burgard, W.

W. Burgard, D. Fox, and S. Thrun, “Probabilistic state estimation techniques for autonomous and decision support systems,” Informatik-Spektrum 34(5), 455–461 (2011).
[Crossref]

Cain, S. C.

R. D. Richmond and S. C. Cain, Direct–Detection LADAR Systems (SPIE, 2010).

Cances, J.-P.

C. Goursaud-Brugeaud, A. Julien-Vergonjanne, and J.-P. Cances, “Prime code efficiency in DS–OCDMA systems using parallel interference cancellation,” J. Commun. 2(3), 51–57 (2007).
[Crossref]

Chakravarty, T.

P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection for embedded networks,” in Proceedings of IEEE International Conference on Dependable Systems and Networks (IEEE, 2004), pp. 145–154.

Champion, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico–projectors: Seeing the big picture (with a small device),” Opt. Photon. News 20(5), 28–34 (2009).
[Crossref]

Cheng, Z.

Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
[Crossref]

Chodavarapu, V. P.

A. Hu and V. P. Chodavarapu, “CMOS optoelectronic lock-in amplifier with integrated phototransistor array,” IEEE Trans. Biomed. Circuits Syst. 4(5), 274–280 (2010).
[Crossref]

Chung, F. R. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis and applications,” IEEE Trans. Inform. Thoery 35(3), 595–604 (1989).
[Crossref]

Contini, D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Dammann, J. F.

B. L. Stann, J. F. Dammann, and M. M. Giza, “Progress on MEMS–scanned Ladar,” Proc. SPIE 9832, 98320L (2016).
[Crossref]

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Deen, M. J.

Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
[Crossref]

Del Giorno, M.

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Derron, M.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

DiBerardino, C.

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Dietz, R. J. B.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

Dolson, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Dong, H.

H. Dong, S. Anderson, and T. D. Barfoot, “Two–axis scanning Lidar geometric calibration using intensity imagery and distortion mapping,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 3672–3678.

Dreyhaupt, A.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Dutta, P.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
[Crossref]

Evans, M. J.

Farina, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Federici, J.

Fenández-Palacios, B. J.

S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
[Crossref]

Fererici, J.

J. Fererici and L. Möller, “Review of terahertz and subterahertz wireless communications,” Opt. Lett. 107(11), 111101 (2010).

Fok, M. P.

Fouche, D. G.

M. E. O’Brien and D. G. Fouche, “Simulation of 3D laser Radar systems,” Lincoln Laboratory Journal 15(1), 37–60 (2005).

Fox, D.

W. Burgard, D. Fox, and S. Thrun, “Probabilistic state estimation techniques for autonomous and decision support systems,” Informatik-Spektrum 34(5), 455–461 (2011).
[Crossref]

Freeman, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico–projectors: Seeing the big picture (with a small device),” Opt. Photon. News 20(5), 28–34 (2009).
[Crossref]

Freese, W.

Fujita, M.

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

Giles, R. C.

Giza, M. M.

B. L. Stann, J. F. Dammann, and M. M. Giza, “Progress on MEMS–scanned Ladar,” Proc. SPIE 9832, 98320L (2016).
[Crossref]

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Göbel, T.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

Gould, S.

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.

Goursaud-Brugeaud, C.

C. Goursaud-Brugeaud, A. Julien-Vergonjanne, and J.-P. Cances, “Prime code efficiency in DS–OCDMA systems using parallel interference cancellation,” J. Commun. 2(3), 51–57 (2007).
[Crossref]

Gregory, I. S.

Grum, F.

Gu, P.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Guðmundsson, S. Á.

S. Á. Guðmundsson, H. Aanæs, and R. Larsen, “Environmental effects on measurement uncertainties of time–of–flight cameras,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2007), vol. 1, pp. 1–4.

Guo, Y.

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

Hagge, J.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Hancock, J.

J. Hancock, “Laser intensity-based obstacle detection and tracking,” Ph.D. thesis, Robotics Institute, Carnegie Mellon University (1999).

Hashemi, M. R.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Haykin, S.

S. Haykin, Communication Systems (Wiley, 2009).

Held, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Helm, M.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Hinesb, G.

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Hisatake, S.

T. Nagatsuma, S. Hisatake, and H. H. N. Pham, “Photonics for millimeter-wave and terahertz sensing and measurement,” IEICE Trans. Electron. 99(2), 173–180 (2016).
[Crossref]

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

Ho, J.

J. Ho and E.-H. Yang, “Designing optimal multiresolution quantizers with error detecting codes,” IEEE Trans. Wirel. Commun. 12(7), 3588–3599 (2013).
[Crossref]

Hochrein, T.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Hofmann, U.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Holmes, A. S.

A. S. Holmes and R. R. A. Syms, “All-optical CDMA using “Quasi-Prime” codes,” J. Lightwave Technol. 10(2), 279–286 (1992).
[Crossref]

Holmström, S. T.

S. T. Holmström, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. S. 23(2), 259–275 (2014).
[Crossref]

Hu, A.

A. Hu and V. P. Chodavarapu, “CMOS optoelectronic lock-in amplifier with integrated phototransistor array,” IEEE Trans. Biomed. Circuits Syst. 4(5), 274–280 (2010).
[Crossref]

Ito, K.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Jaboyedoff, M.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Janes, J.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Jarrahi, M.

M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. THz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Jasen, C.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Jiang, Z.

Jördens, C.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Julien-Vergonjanne, A.

C. Goursaud-Brugeaud, A. Julien-Vergonjanne, and J.-P. Cances, “Prime code efficiency in DS–OCDMA systems using parallel interference cancellation,” J. Commun. 2(3), 51–57 (2007).
[Crossref]

Kagami, M.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Kammel, S.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Kato, S.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Kianka, K.

K. Kianka, “3D documentation and printing in forensics,” in Proceedings of Forensic Engineering 2015: Performance of the Built Environment (ASCE, 2015).

Kim, J.-S.

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

Klick, D. I.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
[Crossref]

Knight, F. K.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
[Crossref]

Ko, Y.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
[Crossref]

Koch, M.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Koller, D.

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.

Kolter, J. Z.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Kono, S.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Koopman, P.

P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection for embedded networks,” in Proceedings of IEEE International Conference on Dependable Systems and Networks (IEEE, 2004), pp. 145–154.

Krotkus, A.

A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D: Appl. Phys. 43(27), 273001 (2010).
[Crossref]

Krumbholz, N.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Kunkel, R.

Künzel, H.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

Küunzel, H.

Kuwano, S.

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

Kwong, W. C.

G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).

W. C. Kwong and G.-C. Yang, Optical Coding Theory with Prime (CRC Press, 2013).

Langer, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Larsen, R.

S. Á. Guðmundsson, H. Aanæs, and R. Larsen, “Environmental effects on measurement uncertainties of time–of–flight cameras,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2007), vol. 1, pp. 1–4.

Leaird, D. E.

Lee, X.

Lescure, M.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Levinson, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Lim, H. C.

Liu, C.

C. Liu and Y. Wang, “A 128–channel, 710 m samples/second, and less than 10 ps RMS resolution time–to–digital converter implemented in a Kintex–7 FPGA,” IEEE Trans. Nucl. Sci. 62(3), 773–783 (2015).
[Crossref]

Liu, X.

X. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. in Phys. Geogr. 32(1), 31–49 (2008).
[Crossref]

Loye, A.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Lu, M.

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

Ma, P. Y.

Madhavan, S.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico–projectors: Seeing the big picture (with a small device),” Opt. Photon. News 20(5), 28–34 (2009).
[Crossref]

Maeda, M.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

Mallas, C.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Matsubara, H.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Matthäus, G.

McManamon, P. F.

P. F. McManamon, “Review of LADAR: A historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

P. F. McManamon, Field Guide to Lidar (SPIE, 2015).
[Crossref]

Metzger, R.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Mittendorff, M.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

Möller, L.

Mora, A. D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Müller, R.

Murphy, J. A.

C. M. O’Sullivan and J. A. Murphy, Field Guide to Terahertz Sources, Detectors, and Optics (SPIE, 2012).

Myllylä, R.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, S. Hisatake, and H. H. N. Pham, “Photonics for millimeter-wave and terahertz sensing and measurement,” IEICE Trans. Electron. 99(2), 173–180 (2016).
[Crossref]

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

Ng, A. Y.

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.

Niclass, C.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Nitsche, S.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Nolte, S.

Notni, G.

O’Brien, M. E.

M. E. O’Brien and D. G. Fouche, “Simulation of 3D laser Radar systems,” Lincoln Laboratory Journal 15(1), 37–60 (2005).

O’Sullivan, C. M.

C. M. O’Sullivan and J. A. Murphy, Field Guide to Terahertz Sources, Detectors, and Optics (SPIE, 2012).

Oppikofer, T.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Park, H.-J.

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

Pedrazzini, A.

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Peng, H.

Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
[Crossref]

Peter, F.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Peters, O.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Pham, H. H. N.

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

T. Nagatsuma, S. Hisatake, and H. H. N. Pham, “Photonics for millimeter-wave and terahertz sensing and measurement,” IEICE Trans. Electron. 99(2), 173–180 (2016).
[Crossref]

Pierrottetc, D.

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Pifferi, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Pink, O.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Powers, M. A.

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Pradarutti, B.

Pratt, V.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Prucnal, P. R.

Quenzer, H. J.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Quigley, M.

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.

Rappaport, T. S.

T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, 2002).

Reisseb, R.

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Remondino, F.

S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
[Crossref]

F. Remondino and D. Stoppa, ToF Range–Imaging Cameras (Springer, 2013).
[Crossref]

Richardson, M. A.

R. Sabatini and M. A. Richardson, Airborne Laser Systems Testing and Analysis (RTO of NATO, 2010).

Richmond, R. D.

R. D. Richmond and S. C. Cain, Direct–Detection LADAR Systems (SPIE, 2010).

Riehemann, S.

Rioux, M.

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Rochus, V.

A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
[Crossref]

Roehle, H.

Rosmeulen, M.

A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
[Crossref]

Rottenberg, X.

A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
[Crossref]

Ryan-Howard, D. P.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
[Crossref]

Sabatini, R.

R. Sabatini and M. A. Richardson, Airborne Laser Systems Testing and Analysis (RTO of NATO, 2010).

Sakai, K.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Salehi, J. A.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis and applications,” IEEE Trans. Inform. Thoery 35(3), 595–604 (1989).
[Crossref]

Salhi, M.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Sartorius, B.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Küunzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, “Continuous wave terahertz systems exploiting 1.5 μm telecom technologies,” Opt. Express 17(17), 15001–15007 (2009).
[Crossref] [PubMed]

Schell, M.

Scheller, M.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Schlak, M.

Schmidt, D.

Schneider, H.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Scholtz, R. A.

R. A. Scholtz, “The origins of spread–sprectrum communications,” IEEE Trans. Commun. 30(5), 822–854 (1982).
[Crossref]

Senger, F.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Sengupta, S.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
[Crossref]

Seo, Y.-H.

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

Shan, J.

J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, 2008).
[Crossref]

Shastri, B. J.

Siegel, P. H.

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Techn. 50(3), 910–928 (2002).
[Crossref]

Sim, J.-Y.

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

Sinyukov, A.

Soga, M.

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20(11), 11863–11881 (2012).
[Crossref] [PubMed]

Sohel, F.

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

Sokolsky, M.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Spinelli, L.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Springsteen, A.

A. Springsteen, “Standards for the measurement of diffuse reflectance – an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380(2), 379–390 (1999).
[Crossref]

Stanek, G.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Stann, B. L.

B. L. Stann, J. F. Dammann, and M. M. Giza, “Progress on MEMS–scanned Ladar,” Proc. SPIE 9832, 98320L (2016).
[Crossref]

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Stanze, D.

Stavens, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Stenchly, V.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Stoppa, D.

F. Remondino and D. Stoppa, ToF Range–Imaging Cameras (Springer, 2013).
[Crossref]

Suh, Y.

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

Süss, A.

A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
[Crossref]

Syms, R. R. A.

A. S. Holmes and R. R. A. Syms, “All-optical CDMA using “Quasi-Prime” codes,” J. Lightwave Technol. 10(2), 279–286 (1992).
[Crossref]

Tani, M.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Teichman, A.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Terada, J.

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

Theriault, J. R.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
[Crossref]

Thrun, S.

W. Burgard, D. Fox, and S. Thrun, “Probabilistic state estimation techniques for autonomous and decision support systems,” Informatik-Spektrum 34(5), 455–461 (2011).
[Crossref]

S. Thrun, “Toward robotic cars,” Commun. ACM 53(4), 99–106 (2010).
[Crossref]

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Tomasulo, S.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
[Crossref]

Tominaga, S.

Torricelli, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

Toth, C. K.

J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, 2008).
[Crossref]

C. K. Toth, “R&D of mobile LIDAR mapping and future trends,” in Proceedings of ASPRS Annual Conference (ASPRS, 2009).

Tribe, W. R.

Tsuruda, K.

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

Tünnermann, A.

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Urey, H.

S. T. Holmström, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. S. 23(2), 259–275 (2014).
[Crossref]

Uzunovic, N.

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

Vanekb, M.

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Vieweg, N.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Visintini, D.

S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
[Crossref]

von Wantoch, T.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Wagner, B.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Wan, J.

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

Wandell, B. A.

Wang, C.

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Wang, Y.

C. Liu and Y. Wang, “A 128–channel, 710 m samples/second, and less than 10 ps RMS resolution time–to–digital converter implemented in a Kintex–7 FPGA,” IEEE Trans. Nucl. Sci. 62(3), 773–783 (2015).
[Crossref]

Wei, V. K.

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis and applications,” IEEE Trans. Inform. Thoery 35(3), 595–604 (1989).
[Crossref]

Weiner, A. M.

Weiss, M.

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

Weiss, U.

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

Weitkamp, C.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2012).

Werling, M.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

Wietzke, S.

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Wightman, T. E.

Wilke, I.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
[Crossref]

WInnerl, S.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
[Crossref]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Wright, A.

A. Wright, “Automotive autonomy,” Commun. ACM 54(7), 16–18 (2011).
[Crossref]

Wu, B.

Xie, C.

Xu, M.

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

Yang, E.-H.

J. Ho and E.-H. Yang, “Designing optimal multiresolution quantizers with error detecting codes,” IEEE Trans. Wirel. Commun. 12(7), 3588–3599 (2013).
[Crossref]

Yang, G.-C.

G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).

W. C. Kwong and G.-C. Yang, Optical Coding Theory with Prime (CRC Press, 2013).

Young, J. W.

J. W. Young, “Advantages of high resolution LiDAR,” LiDAR News Magazine4(6), (2014).

Zheng, X.

Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
[Crossref]

Anal. Chim. Acta (1)

A. Springsteen, “Standards for the measurement of diffuse reflectance – an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380(2), 379–390 (1999).
[Crossref]

Appl. Opt. (2)

Appl. Phys. (1)

C. Jasen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Phys. 49(19), E48–E57 (2010).

Appl. Phys. Lett. (3)

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

M. Xu, M. Mittendorff, R. J. B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, and S. WInnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm,” Appl. Phys. Lett. 103(25), 251114 (2013).
[Crossref]

Commun. ACM (2)

S. Thrun, “Toward robotic cars,” Commun. ACM 53(4), 99–106 (2010).
[Crossref]

A. Wright, “Automotive autonomy,” Commun. ACM 54(7), 16–18 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Nagatsuma, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, “Millimeter-wave and terahertz-wave applications enabled by photonics,” IEEE J. Quantum Electron. 52(1), 0660912 (2016).
[Crossref]

IEEE J. Solid-St. Circ. (1)

J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300–MS/s, 1.76–ps–resolution, 10–b asynchronous pipelined time–to–digital converter with on–chip digital background calibration in 0.13–μm CMOS,” IEEE J. Solid-St. Circ. 48i(2), 516–526 (2013).
[Crossref]

IEEE Photonics J. (1)

K. Ito, C. Niclass, I. Aoyagi, H. Matsubara, M. Soga, S. Kato, M. Maeda, and M. Kagami, “System design and performance characterization of a MEMS-based laser scanning time-of-flight sensor based on a 256 × 64-pixel single-photon imager,” IEEE Photonics J. 5(2), 6800114 (2013).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

A. Hu and V. P. Chodavarapu, “CMOS optoelectronic lock-in amplifier with integrated phototransistor array,” IEEE Trans. Biomed. Circuits Syst. 4(5), 274–280 (2010).
[Crossref]

IEEE Trans. Commun. (1)

R. A. Scholtz, “The origins of spread–sprectrum communications,” IEEE Trans. Commun. 30(5), 822–854 (1982).
[Crossref]

IEEE Trans. Electron Dev. (1)

Z. Cheng, X. Zheng, M. J. Deen, and H. Peng, “Recent developments and design challenges of high–performance ring oscillator CMOS time–to–digital converters,” IEEE Trans. Electron Dev. 63(1), 235–251 (2016).
[Crossref]

IEEE Trans. Inform. Thoery (1)

F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis and applications,” IEEE Trans. Inform. Thoery 35(3), 595–604 (1989).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Techn. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

C. Liu and Y. Wang, “A 128–channel, 710 m samples/second, and less than 10 ps RMS resolution time–to–digital converter implemented in a Kintex–7 FPGA,” IEEE Trans. Nucl. Sci. 62(3), 773–783 (2015).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recoginition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. THz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

J. Ho and E.-H. Yang, “Designing optimal multiresolution quantizers with error detecting codes,” IEEE Trans. Wirel. Commun. 12(7), 3588–3599 (2013).
[Crossref]

IEICE Trans. Electron. (1)

T. Nagatsuma, S. Hisatake, and H. H. N. Pham, “Photonics for millimeter-wave and terahertz sensing and measurement,” IEICE Trans. Electron. 99(2), 173–180 (2016).
[Crossref]

Informatik-Spektrum (1)

W. Burgard, D. Fox, and S. Thrun, “Probabilistic state estimation techniques for autonomous and decision support systems,” Informatik-Spektrum 34(5), 455–461 (2011).
[Crossref]

Int. J. Herit. Digit. Era (1)

S. G. Barsanti, F. Remondino, B. J. Fenández-Palacios, and D. Visintini, “Critical factors and guidelines for 3D surveying and modelling in cultural heritage,” Int. J. Herit. Digit. Era 3(1), 141–158 (2014).
[Crossref]

J. Biomed. Opt. (1)

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref] [PubMed]

J. Commun. (1)

C. Goursaud-Brugeaud, A. Julien-Vergonjanne, and J.-P. Cances, “Prime code efficiency in DS–OCDMA systems using parallel interference cancellation,” J. Commun. 2(3), 51–57 (2007).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
[Crossref]

J. Lightwave Technol. (1)

A. S. Holmes and R. R. A. Syms, “All-optical CDMA using “Quasi-Prime” codes,” J. Lightwave Technol. 10(2), 279–286 (1992).
[Crossref]

J. Micro-Nanolith. Mem. (1)

U. Hofmann, M. Aikio, J. Janes, F. Senger, V. Stenchly, J. Hagge, H. J. Quenzer, M. Weiss, T. von Wantoch, C. Mallas, B. Wagner, and W. Benecke, “Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning,” J. Micro-Nanolith. Mem. 13(1), 011103 (2014).
[Crossref]

J. Microelectromech. S. (1)

S. T. Holmström, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. S. 23(2), 259–275 (2014).
[Crossref]

J. Opt. Netw. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D: Appl. Phys. 43(27), 273001 (2010).
[Crossref]

Lincoln Laboratory Journal (1)

M. E. O’Brien and D. G. Fouche, “Simulation of 3D laser Radar systems,” Lincoln Laboratory Journal 15(1), 37–60 (2005).

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Hazards (1)

M. Jaboyedoff, T. Oppikofer, A. Abellán, M. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LIDAR in landslide investigation: a review,” Nat. Hazards 61(1), 5–28 (2012).
[Crossref]

Opt. Eng. (3)

M. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

P. F. McManamon, “Review of LADAR: A historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, and J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30(1), 55–65 (1991).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Photon. News (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico–projectors: Seeing the big picture (with a small device),” Opt. Photon. News 20(5), 28–34 (2009).
[Crossref]

Phys. Rev. B (1)

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk GaxIn1 − x As crystals,” Phys. Rev. B 78(3), 035201 (2008).
[Crossref]

Proc. SPIE (4)

B. L. Stann, J. F. Dammann, M. Del Giorno, C. DiBerardino, M. M. Giza, M. A. Powers, and N. Uzunovic, “Integration and demonstration of MEMS–scanned Ladar for robotic navigation,” Proc. SPIE 9084, 90840J (2014).
[Crossref]

B. L. Stann, J. F. Dammann, and M. M. Giza, “Progress on MEMS–scanned Ladar,” Proc. SPIE 9832, 98320L (2016).
[Crossref]

A. Süss, V. Rochus, M. Rosmeulen, and X. Rottenberg, “Benchmarking time–of–flight based depth measurement techniques,” Proc. SPIE 9751, 975118 (2016).
[Crossref]

A. Bulyshev, M. Vanekb, F. Amzajerdianb, D. Pierrottetc, G. Hinesb, and R. Reisseb, “A super-resolution algorithm for enahancement of FlASH LIDAR data,” Proc. SPIE 7873, 78730F (2011).
[Crossref]

Prog. in Phys. Geogr. (1)

X. Liu, “Airborne LiDAR for DEM generation: some critical issues,” Prog. in Phys. Geogr. 32(1), 31–49 (2008).
[Crossref]

Robot Auton. Syst. (1)

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

Other (22)

T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, 2002).

S. Haykin, Communication Systems (Wiley, 2009).

C. M. O’Sullivan and J. A. Murphy, Field Guide to Terahertz Sources, Detectors, and Optics (SPIE, 2012).

H. Dong, S. Anderson, and T. D. Barfoot, “Two–axis scanning Lidar geometric calibration using intensity imagery and distortion mapping,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 3672–3678.

R. Sabatini and M. A. Richardson, Airborne Laser Systems Testing and Analysis (RTO of NATO, 2010).

J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, 2008).
[Crossref]

S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller, “Integration visual and range data for robotic object detection,” in Proceedings of Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, (2008), vol. 1, pp. 1–4.

J. W. Young, “Advantages of high resolution LiDAR,” LiDAR News Magazine4(6), (2014).

J. Hancock, “Laser intensity-based obstacle detection and tracking,” Ph.D. thesis, Robotics Institute, Carnegie Mellon University (1999).

P. F. McManamon, Field Guide to Lidar (SPIE, 2015).
[Crossref]

R. D. Richmond and S. C. Cain, Direct–Detection LADAR Systems (SPIE, 2010).

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2012).

K. Kianka, “3D documentation and printing in forensics,” in Proceedings of Forensic Engineering 2015: Performance of the Built Environment (ASCE, 2015).

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in Proceedings of IEEE Intelligent Vehices Symposium (IEEE, 2011), pp. 163–168.

C. K. Toth, “R&D of mobile LIDAR mapping and future trends,” in Proceedings of ASPRS Annual Conference (ASPRS, 2009).

S. Á. Guðmundsson, H. Aanæs, and R. Larsen, “Environmental effects on measurement uncertainties of time–of–flight cameras,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2007), vol. 1, pp. 1–4.

F. Remondino and D. Stoppa, ToF Range–Imaging Cameras (Springer, 2013).
[Crossref]

HDL-64E S3 Users’ Manual and Programming Guide (Velodyne, 2013).

Peregrine 3D Flash LIDAR Vision System (ASC, 2014). http://www.advancedscientificconcepts.com/products/peregrine.html .

P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial selection for embedded networks,” in Proceedings of IEEE International Conference on Dependable Systems and Networks (IEEE, 2004), pp. 145–154.

W. C. Kwong and G.-C. Yang, Optical Coding Theory with Prime (CRC Press, 2013).

G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Overall system of the proposed 3D scanning LIDAR
Fig. 2
Fig. 2 Data transmission and reception sequence
Fig. 3
Fig. 3 Global operations in the proposed LIDAR.
Fig. 4
Fig. 4 13-bit stream consisting of a 10-bit column identification number and 3-bit cyclic redundancy check (CRC) checksum from the most significant bit (MSB) to the least significant bit (LSB).
Fig. 5
Fig. 5 Transmission procedure in the transmitter part.
Fig. 6
Fig. 6 Reception procedure in the receiver part.
Fig. 7
Fig. 7 Flow chart of the simulation steps for static scenario. The green dot lines for Velodyne’s HDL-64E; The blue dot lines for ASC’s Peregrine; The red dot lines for the proposed LIDAR.
Fig. 8
Fig. 8 Simulation results of distnace measured by each LIDAR for a target object stopped at 30 m.
Fig. 9
Fig. 9 Simulation results of distnace measured by each LIDAR for a target object stopped at 50 m.
Fig. 10
Fig. 10 Simulation results of distnace measured by each LIDAR for a target object stopped at 70 m.
Fig. 11
Fig. 11 Simulation results of distnace measured by each LIDAR for a target object stopped at 120 m.

Tables (4)

Tables Icon

Table 1 Prime sequences over GF(29) based on the prime number 29

Tables Icon

Table 2 Each element of prime sequence Si is mapped into binary code words Ci

Tables Icon

Table 3 Simulation parameters

Tables Icon

Table 4 Number of points in point cloud as a summary of simulation results

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d = c Δ t 2 = ϕ c 4 π f = c B T 4 Δ f
c i , l = { 1 if l = s i , j + 29 j for j = 0 , 1 , , 28 0 otherwise
C i , j ( l ) = n = 0 840 C i ( n ) C j ( n + l )
Θ i , j ( l ) = n = 0 840 C i ( n ) C j ( ( n + l ) mod 841 ) = C i , j ( l mod 841 ) + C i , j ( ( l mod 841 ) 841 )

Metrics