Abstract

The self-mode-locked (SML) operation at 946 nm can be achieved with a monolithic Nd:YAG crystal when the pump power is above the threshold of the multiple-longitudinal-mode generation. The SML output is further found to include two orthogonal polarization components with a beat frequency coming from the birefringence effect in the laser crystal. The beat frequency can be widely adjusted in the range of 5−220 MHz by controlling the cooling temperature. The present experiment also confirms the theoretical prediction that the two-mode operation generally exhibits the chaotic dynamics when the frequency difference is sufficiently close to the relaxation frequency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen
Opt. Lett. 41(8) 1781-1784 (2016)

Orthogonally polarized single-longitudinal-mode operation in a dual-wavelength monolithic Nd:YAG laser at 1319  nm and 1338  nm

Hao Ping Cheng, Yu Cheng Liu, Tzu Lin Huang, Hsing Chih Liang, and Yung Fu Chen
Photon. Res. 6(8) 815-820 (2018)

Synchronized self-mode-locked 1061-nm and 1064-nm monolithic Nd:YAG laser at cryogenic temperatures with two orthogonally polarized emissions: generation of 670 GHz beating

T. L. Huang, C. L. Sung, H. P. Cheng, C. Y. Cho, H. C. Liang, K. W. Su, K. F. Huang, and Y. F. Chen
Opt. Express 24(19) 22189-22197 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Holzapfel and U. Riss, “Computer-based high resolution transmission ellipsometry,” Appl. Opt. 26(1), 145–153 (1987).
    [Crossref] [PubMed]
  2. M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett. 13(10), 805–807 (1988).
    [Crossref] [PubMed]
  3. I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
    [Crossref] [PubMed]
  4. M. Rosenbluh, V. Shah, S. Knappe, and J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14(15), 6588–6594 (2006).
    [Crossref] [PubMed]
  5. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [Crossref]
  6. W. Holzapfel and M. Finnemann, “High-resolution force sensing by a diode-pumped Nd:YAG laser,” Opt. Lett. 18(23), 2062–2064 (1993).
    [Crossref] [PubMed]
  7. S. L. Zhang and W. Holzapfel, Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Wiley, 2013).
  8. S. Yang and S. L. Chang, “The frequency split phenomenon in a He-Ne laser with a rotational quartz plate in its cavity,” Opt. Commun. 68(1), 55–57 (1988).
    [Crossref]
  9. S. L. Chang, M. Lu, and M. X. Wu, “Laser frequency split by an electro-optical element in its cavity,” Opt. Commun. 96(4), 245–248 (1993).
  10. A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12(12), 999–1001 (1987).
    [Crossref] [PubMed]
  11. T. Yoshino and Y. Kobayashi, “Temperature characteristics and stabilization of orthogonal polarization two-frequency Nd3+:YAG microchip lasers,” Appl. Opt. 38(15), 3266–3270 (1999).
    [Crossref] [PubMed]
  12. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [Crossref]
  13. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
    [Crossref]
  14. C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
    [Crossref]
  15. M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403 (2001).
    [Crossref]
  16. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
    [Crossref] [PubMed]
  17. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
    [Crossref] [PubMed]
  18. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
    [Crossref] [PubMed]
  19. C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
    [Crossref] [PubMed]
  20. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [Crossref] [PubMed]
  21. A. Lagatsky, C. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
    [Crossref] [PubMed]
  22. H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
    [Crossref]
  23. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
    [Crossref] [PubMed]
  24. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [Crossref] [PubMed]
  25. W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
    [Crossref] [PubMed]
  26. C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
    [Crossref]
  27. Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
    [Crossref]
  28. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [Crossref] [PubMed]
  29. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
    [Crossref] [PubMed]
  30. Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
    [Crossref]
  31. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” Opt. Lett. 26(12), 941–943 (2001).
    [Crossref] [PubMed]
  32. S. Zhou, K. K. Lee, Y. C. Chen, and S. Li, “Monolithic self-Q-switched Cr,Nd:YAG laser,” Opt. Lett. 18(7), 511–512 (1993).
    [Crossref] [PubMed]
  33. R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23(6), 457–459 (1998).
    [Crossref] [PubMed]
  34. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  35. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  36. N. V. Kravtsov and E. G. E. Lariontsev, “Self-modulation oscillations and relaxation processes in solid-state ring lasers,” Quantum Electron. 24(10), 841–856 (1994).
    [Crossref]
  37. I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
    [Crossref]
  38. Y. F. Chen and Y. P. Lan, “Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser,” Appl. Phys. B 73(1), 11–14 (2001).
    [Crossref]
  39. T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
    [Crossref] [PubMed]
  40. J. Ding, Q. Feng, L. Zhang, and S. Zhang, “Laser frequency splitting method for high-resolution determination of relative stress-optic coefficient and internal stresses in Nd:YAG crystals,” Appl. Opt. 47(30), 5631–5636 (2008).
    [Crossref] [PubMed]
  41. A. Kuske and G. Robertson, Photoelastic Stress Analysis (Wiley, 1974), pp. 88 and 108–110.
  42. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 2006), Chap. 2.

2016 (1)

2015 (2)

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

2014 (1)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

2013 (2)

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

2012 (1)

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

2011 (2)

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

2010 (3)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

2009 (1)

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

2001 (4)

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403 (2001).
[Crossref]

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” Opt. Lett. 26(12), 941–943 (2001).
[Crossref] [PubMed]

Y. F. Chen and Y. P. Lan, “Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser,” Appl. Phys. B 73(1), 11–14 (2001).
[Crossref]

T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

1999 (2)

1998 (1)

1995 (1)

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

1994 (1)

N. V. Kravtsov and E. G. E. Lariontsev, “Self-modulation oscillations and relaxation processes in solid-state ring lasers,” Quantum Electron. 24(10), 841–856 (1994).
[Crossref]

1993 (3)

1992 (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

1991 (1)

1988 (2)

S. Yang and S. L. Chang, “The frequency split phenomenon in a He-Ne laser with a rotational quartz plate in its cavity,” Opt. Commun. 68(1), 55–57 (1988).
[Crossref]

M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett. 13(10), 805–807 (1988).
[Crossref] [PubMed]

1987 (2)

1970 (1)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

Brabec, T.

Brown, C.

Butendeich, R.

Chang, C. C.

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Chang, H. L.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Chang, M. T.

Chang, S. L.

S. L. Chang, M. Lu, and M. X. Wu, “Laser frequency split by an electro-optical element in its cavity,” Opt. Commun. 96(4), 245–248 (1993).

S. Yang and S. L. Chang, “The frequency split phenomenon in a He-Ne laser with a rotational quartz plate in its cavity,” Opt. Commun. 68(1), 55–57 (1988).
[Crossref]

Chen, D. W.

Chen, Y. C.

Chen, Y. F.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Y. F. Chen and Y. P. Lan, “Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser,” Appl. Phys. B 73(1), 11–14 (2001).
[Crossref]

Chen, Y. J.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Chen, Y. T.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Cheng, H. P.

Cho, C. Y.

Cho, D. J.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Conroy, R. S.

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

Davitt, K. M.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403 (2001).
[Crossref]

Ding, J.

Dong, J.

Elsässer, W.

T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Esherick, P.

Feng, Q.

Fields, R. A.

Fincher, C. L.

Finnemann, M.

Firsov, V. V.

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

Fischer, I.

T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Friel, G. J.

Gavrielides, A.

T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Gong, X. H.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Heil, T.

T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Hetzler, J.

Higuchi, T.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Holzapfel, W.

Huang, J. H.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Huang, K. F.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Huang, W. C.

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Huang, Y. D.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Huang, Y. J.

Ivanova, M. Y.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403 (2001).
[Crossref]

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Kaminskii, A. A.

Kanda, N.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Kärtner, F. X.

Kemp, A. J.

Kim, C. M.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Kim, H. T.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Kim, I. J.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Kitching, J.

Knappe, S.

Kobayashi, Y.

Koechner, W.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Krausz, F.

Kravtsov, N. V.

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

N. V. Kravtsov and E. G. E. Lariontsev, “Self-modulation oscillations and relaxation processes in solid-state ring lasers,” Quantum Electron. 24(10), 841–856 (1994).
[Crossref]

Kremp, T.

Kubota, S.

Kuwata-Gonokami, M.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Lagatsky, A.

Lake, T.

Lan, Y. P.

Y. F. Chen and Y. P. Lan, “Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser,” Appl. Phys. B 73(1), 11–14 (2001).
[Crossref]

Lariontsev, E. G. E.

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

N. V. Kravtsov and E. G. E. Lariontsev, “Self-modulation oscillations and relaxation processes in solid-state ring lasers,” Quantum Electron. 24(10), 841–856 (1994).
[Crossref]

Lee, C. Y.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Lee, G. H.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Lee, K. K.

Lee, Y. S.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Li, S.

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Liang, H. C.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Lin, Y. F.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Lu, M.

S. L. Chang, M. Lu, and M. X. Wu, “Laser frequency split by an electro-optical element in its cavity,” Opt. Commun. 96(4), 245–248 (1993).

Luo, Z. D.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Makarov, A. A.

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Morgner, U.

Nam, C. H.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Oka, M.

Owyoung, A.

Park, J. Y.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

Pavel, N.

Qian, L. J.

Rice, D. K.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

Riss, U.

Rose, T. S.

Rosenbluh, M.

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Schibli, T. R.

Scholz, F.

Schwarz, J.

Schweizer, H.

Shah, V.

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Shirakawa, A.

Sibbett, W.

Sinclair, B. D.

Spanner, M.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403 (2001).
[Crossref]

Spielmann, C.

Su, K. W.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

Sung, C. L.

Taira, T.

Tan, Y. D.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Tang, D. Y.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[Crossref] [PubMed]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Tsunekane, M.

Ueda, K.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

Vernon, F. L.

Wegener, M.

Wu, M. X.

S. L. Chang, M. Lu, and M. X. Wu, “Laser frequency split by an electro-optical element in its cavity,” Opt. Commun. 96(4), 245–248 (1993).

Xie, G. Q.

Xu, C. W.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Yagi, H.

Yanagitani, T.

Yang, S.

S. Yang and S. L. Chang, “The frequency split phenomenon in a He-Ne laser with a rotational quartz plate in its cavity,” Opt. Commun. 68(1), 55–57 (1988).
[Crossref]

Yoshino, T.

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Zhang, J.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Zhang, L.

Zhang, S.

Zhang, S. L.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Zhao, L. M.

Zhou, S.

Zhu, H. Y.

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Zhuang, W. Z.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

Zolotoverkh, I. I.

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (2)

Y. F. Chen and Y. P. Lan, “Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser,” Appl. Phys. B 73(1), 11–14 (2001).
[Crossref]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B 97(2), 451–455 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[Crossref]

J. Chem. Phys. (1)

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys. 115(18), 8403 (2001).
[Crossref]

Laser Photonics Rev. (2)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

Laser Phys. Lett. (1)

C. W. Xu, D. Y. Tang, H. Y. Zhu, and J. Zhang, “Mode locking of Yb: GdYAG ceramic lasers with an isotropic cavity,” Laser Phys. Lett. 10(9), 095702 (2013).
[Crossref]

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Nano Lett. (1)

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[Crossref] [PubMed]

Opt. Commun. (3)

S. Yang and S. L. Chang, “The frequency split phenomenon in a He-Ne laser with a rotational quartz plate in its cavity,” Opt. Commun. 68(1), 55–57 (1988).
[Crossref]

S. L. Chang, M. Lu, and M. X. Wu, “Laser frequency split by an electro-optical element in its cavity,” Opt. Commun. 96(4), 245–248 (1993).

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3)4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (12)

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
[Crossref] [PubMed]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[Crossref] [PubMed]

F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
[Crossref] [PubMed]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” Opt. Lett. 26(12), 941–943 (2001).
[Crossref] [PubMed]

S. Zhou, K. K. Lee, Y. C. Chen, and S. Li, “Monolithic self-Q-switched Cr,Nd:YAG laser,” Opt. Lett. 18(7), 511–512 (1993).
[Crossref] [PubMed]

R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23(6), 457–459 (1998).
[Crossref] [PubMed]

A. Owyoung and P. Esherick, “Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser,” Opt. Lett. 12(12), 999–1001 (1987).
[Crossref] [PubMed]

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[Crossref] [PubMed]

W. Holzapfel and M. Finnemann, “High-resolution force sensing by a diode-pumped Nd:YAG laser,” Opt. Lett. 18(23), 2062–2064 (1993).
[Crossref] [PubMed]

M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers,” Opt. Lett. 13(10), 805–807 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, “Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field,” Phys. Rev. Lett. 94(24), 243901 (2005).
[Crossref] [PubMed]

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[Crossref] [PubMed]

T. Heil, I. Fischer, W. Elsässer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Quantum Electron. (2)

N. V. Kravtsov and E. G. E. Lariontsev, “Self-modulation oscillations and relaxation processes in solid-state ring lasers,” Quantum Electron. 24(10), 841–856 (1994).
[Crossref]

I. I. Zolotoverkh, N. V. Kravtsov, E. G. E. Lariontsev, A. A. Makarov, and V. V. Firsov, “New mechanisms of the appearance of dynamic chaos in a ring solid-state laser,” Quantum Electron. 25(3), 197–199 (1995).
[Crossref]

Other (3)

S. L. Zhang and W. Holzapfel, Orthogonal Polarization in Lasers: Physical Phenomena and Engineering Applications (Wiley, 2013).

A. Kuske and G. Robertson, Photoelastic Stress Analysis (Wiley, 1974), pp. 88 and 108–110.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 2006), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup for the monolithic Nd:YAG laser at 946 nm; (b) end view of the crystal holder with the water cooling.
Fig. 2
Fig. 2 RF power spectrum and the temporal trace at a pump power of 1.04 times the lasing threshold.
Fig. 3
Fig. 3 (a) Experimental result for the output power versus the incident pump; (b) optical spectrum of the lasing output at the maximum pump power.
Fig. 4
Fig. 4 Oscilloscope traces with the time span of: (a) 50 ns and (b) 2 ns for the mode-locked operation; (c) autocorrelation trace of the output pulses.
Fig. 5
Fig. 5 Pulse trains of the polarization-resolved output intensities Iθ (t) at a pump power of 2.5 W: (a) θ = 0°; (b) θ = 90°; (c) θ = 45°; and (d) θ = 135°.
Fig. 6
Fig. 6 (a) Total output power versus the water cooling temperature Tc at a pump power 2.0 W; (b) beat frequency versus with the water cooling temperature; (c) polarization-resolved output intensity I45o (t) at Tc = 10 °C; (d) polarization-resolved output intensity I45o (t) at Tc = 27 °C.
Fig. 7
Fig. 7 RF power spectrum and the temporal trace at a pump power of 2.0 W for the polarization-resolved output intensity I45o (t) (a) at Tc→Ts from the lower temperature and (b) chaotic dynamics with increasing a tiny temperature; as well as for the polarization-resolved output intensity I135o (t) (c) at Tc→Ts from the lower temperature and (d) chaotic dynamics with increasing a tiny temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δf=f ΔL n L cry ,
ΔL=C L cry Δσ,
Δσ=E α T ΔT,
Δf T s T c =f C n E α T μ.

Metrics