Abstract

In single-pixel coded aperture terahertz-imaging, the individual pixel size in the spatial terahertz modulator is usually comparable to the terahertz wavelength in order to obtain a sufficient spatial image resolution. Therefore, diffraction plays an important role in the imaging process and must be accurately taken into account when the image is computationally retrieved. For this reason, we analyzed the impact of diffraction from the spatial terahertz modulator on the quality of the reconstructed image in single-pixel coded aperture imaging. We observed that the most important fraction of the image information is already contained in the zero order diffracted radiation. Higher diffraction orders do not contain enough information to retrieve the image from them solely, yet can contribute to an improved image quality when added to the zero order information.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2D tomographic terahertz imaging using a single pixel detector

Till Mohr, Andreas Herdt, and Wolfgang Elsässer
Opt. Express 26(3) 3353-3367 (2018)

Single-pixel digital holography with phase-encoded illumination

Lluís Martínez-León, Pere Clemente, Yutaka Mori, Vicent Climent, Jesús Lancis, and Enrique Tajahuerce
Opt. Express 25(5) 4975-4984 (2017)

Subpixel-shift cyclic-Hadamard microscopic imaging using a pseudo-inverse-matrix procedure

Shota Tetsuno, Kyuki Shibuya, and Tetsuo Iwata
Opt. Express 25(4) 3420-3432 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
    [Crossref]
  3. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
    [Crossref]
  4. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
    [Crossref]
  5. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
    [Crossref]
  6. R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
    [Crossref]
  7. J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).
  8. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
    [Crossref]
  9. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
    [Crossref] [PubMed]
  10. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
    [Crossref]
  11. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [Crossref]
  12. N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
    [Crossref]
  13. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
    [Crossref]
  14. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
    [Crossref] [PubMed]
  15. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
    [Crossref] [PubMed]
  16. B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21, 2324–2330 (2013).
    [Crossref] [PubMed]
  17. A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
    [Crossref]

2014 (3)

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

2013 (2)

2012 (2)

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

2010 (1)

2009 (1)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

2008 (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Bauer, M.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Benz, A.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Boppel, S.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Brener, I.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Busch, S.

Cathelin, A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

Chen, H.-T.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Cheng, L. J.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Cich, M. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Ewert, U.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Fay, P.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Forster, W.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Grzyb, J.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Hadi, R. A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Hochrein, T.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Jansen, C.

Jena, D.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

Jiang, Z.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Jördens, C.

Kaiser, A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Kannegulla, A.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Karl, N.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Keller, H. M.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

Khare, S.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Koch, M.

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
[Crossref] [PubMed]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Krozer, V.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Krumbholz, N.

Kuleshov, E. A.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Lisauskas, A.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Liu, L.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21, 2324–2330 (2013).
[Crossref] [PubMed]

Mendis, R.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Mittleman, D. M.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Moneke, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Nazarov, M. M.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref] [PubMed]

Palenskis, V.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Peters, O.

Pfeiffer, U. R.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Protasenko, V.

Rafique, S.

Rahman, S. M.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Reichel, K.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Reno, J. L.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

Richter, H.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Roskos, H. G.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Rutz, F.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Salhi, M.

Scheller, M.

Scherger, B.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Sensale-Rodriguez, B.

Shams, M. I. B.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Sherry, H.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Shkurinov, A. P.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

Taylor, A. J.

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tuchin, V. V.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Vieweg, N.

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21, 12507–12518 (2013).
[Crossref] [PubMed]

Wietzke, S.

Xing, H. G.

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21, 2324–2330 (2013).
[Crossref] [PubMed]

Yan, R.

Zdanevicius, J.

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Zhao, Y.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

Zhu, M.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett (1)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett 93, 121105 (2008).
[Crossref]

Appl. Phys. Lett. (2)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

N. Karl, K. Reichel, H.-T. Chen, A. J. Taylor, I. Brener, A. Benz, J. L. Reno, R. Mendis, and D. M. Mittleman, “An electrically driven terahertz metamaterial diffractive modulator with more than 20 db of dynamic range,” Appl. Phys. Lett. 104, 091115 (2014).
[Crossref]

IEEE J. Solid-State Circuits (1)

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7 – 1.1 terahertz imaging applications in 65-nm cmos,” IEEE J. Solid-State Circuits 47, 2999–3012 (2012).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Kannegulla, Z. Jiang, S. M. Rahman, M. I. B. Shams, P. Fay, H. G. Xing, L. J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4, 321–327 (2014).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millimeter Waves 27, 547–556 (2007).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photonics Rev. 5, 124–166 (2011).
[Crossref]

Nat. Photon (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photon 8, 605–609 (2014).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Quantum Electron. (1)

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266 (2005).
[Crossref]

Other (1)

J. Zdanevičius, S. Boppel, M. Bauer, A. Lisauskas, V. Palenskis, V. Krozer, and H. G. Roskos, “A stitched 24×24 field-effect transistor detector array and low-noise readout electronics for real-time imaging at 590 GHz,” 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) pp. 1–2 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic setup for single-pixel terahertz imaging. The radiation from the terahertz emitter is collimated by an off-axis parabolic mirror (Oapm) and illuminates the object. In order to detect and reconstruct the image, the terahertz beam is spatially modulated by a spatial terahertz modulator (Stm) and focused with a second Oapm onto the detector. The region which is numerically investigated in this study is represented by the grey region.
Fig. 2
Fig. 2 Amplitude transmission curve of the object to be imaged. For the simulation, an object with a spatially varying amplitude transmission was used. The spatial dependence of the transmission can be described by 4 different transmission plateaus of different length and transmission amplitude.
Fig. 3
Fig. 3 Simulation model. Electric field of the terahertz waves after scattering from the object/Stm. The simulation was performed with COMSOL Multiphysics ®. The scattering from the object and the Stm is simulated by means of scattering boundary conditions. The scattered radiation is focused by an Oapm onto the detector (D). The detector is placed in the focal plane. The field energy on the detector is calculated by integrating the field energy density over the detector width.
Fig. 4
Fig. 4 Reconstructed image for 32 pixel modulator. The image is reconstructed for a pixel size of 1.25 mm and different detector widths between 0.5 mm and 25 mm. In (b) the amplitude transmission is coded in the color of the plot.
Fig. 5
Fig. 5 Image reconstruction error for 32 pixel modulator. The maximum absolute error between the reconstructed image in Fig. 4b and the predefined object in Fig. 2 is shown depending on the detector width.
Fig. 6
Fig. 6 Image reconstruction error depending on the lateral detector position. The maximum absolute error between the reconstructed image and the object is shown depending on the lateral offset of the detector from the optical axis of beam propagation for different detector widths between 0.5 mm and 10 mm.
Fig. 7
Fig. 7 Reconstructed image for 512 pixel modulator. The image is reconstructed for a pixel size of 78 μm and different detector widths between 0.5 mm and 25 mm. In (b) the amplitude transmission is coded in the color of the plot.
Fig. 8
Fig. 8 Image reconstruction error for 512 pixel images. The maximum absolute error between the reconstructed image in Fig. 7b and the predefined object in Fig. 2 is shown depending on the detector width.
Fig. 9
Fig. 9 Image reconstruction error depending on the pixel size. The image reconstruction error is analyzed depending on the number of pixels used to project the object of 4 cm size onto the detector. The maximum absolute error is calculated for detector widths between 1 mm and 25 mm. The abscissa is in a logarithmic scale. The terahertz wavelength is for the imaging is at 300 μm.

Metrics