Abstract

We propose a star-type polarizer with equal-power splitting function for each polarization based on polarization-dependent defects (PDDs) in two-dimensional photonic-crystal waveguides (PCWs). The structure is designed by combining two Y-type PCWs, and two types of PDDs are introduced into the PCWs respectively to provide polarization functions. By using finite-element method and optimizing the parameters of the PDDs, it is demonstrated that different polarizations can only transmit through their own PCWs and output with identical power distributions, i.e., the structure can function as polarizer and equal-power splitter for each polarization at the same time. In addition, by scanning the wavelength of the structure, it is proved that the proposed splitter can work in a wide range of wavelength while keeping high output transmission for both the TE and TM polarizations. Such a structure is useful for polarization-relative multi-channel signal processing for optical communications in the mid- and far-infrared wavelength regions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency polarization beam splitter based on a self-collimating photonic crystal

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee
J. Opt. Soc. Am. B 27(11) 2247-2254 (2010)

Design of polarization beam splitter based on coupled rods in a square-lattice photonic crystal

Maurice Sesay, Xin Jin, and Zhengbiao Ouyang
J. Opt. Soc. Am. B 30(8) 2043-2047 (2013)

Transverse-electric and transverse-magnetic mode slow light propagation in a two-dimensional photonic crystal waveguide

Donglin Wang, Zhongyuan Yu, Yumin Liu, Xiaotao Guo, Changgan Shu, and Shuai Zhou
Appl. Opt. 52(26) 6523-6528 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  5. J. H. Jiang and S. John, “Photonic crystal architecture for room-temperature equilibrium Bose-Einstein condensation of exciton polaritons,” Phys. Rev. X 4(3), 031025 (2014).
    [Crossref]
  6. K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures,” Opt. Express 23(19), A1040–A1050 (2015).
    [Crossref] [PubMed]
  7. A. E. Erol and H. S. Sözüer, “High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide,” Opt. Express 23(25), 32690–32695 (2015).
    [Crossref] [PubMed]
  8. S. Feng, J. H. Jiang, A. A. Rashid, and S. John, “Biosensor architecture for enhanced disease diagnostics: lab-in-a-photonic-crystal,” Opt. Express 24(11), 12166–12191 (2016).
    [Crossref] [PubMed]
  9. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18(2), 162–165 (2001).
    [Crossref]
  10. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and H. Lee, “Photonic crystal power-splitter based on directional coupling,” Opt. Express 12(15), 3599–3604 (2004).
    [Crossref] [PubMed]
  11. Z. Y. Wang, L. F. Shen, Z. H. Yu, X. M. Zhang, and X. D. Zheng, “Highly efficient photonic-crystal splitters based on one-way waveguiding,” J. Opt. Soc. Am. B 30(1), 173–176 (2013).
    [Crossref]
  12. D. C. Tee, N. Tamchek, Y. G. Shee, and F. R. Adikan, “Numerical investigation on cascaded 1 × 3 photonic crystal power splitter based on asymmetric and symmetric 1 × 2 photonic crystal splitters designed with flexible structural defects,” Opt. Express 22(20), 24241–24255 (2014).
    [Crossref] [PubMed]
  13. S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40(4), 863–872 (2010).
  14. L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
    [Crossref]
  15. M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1 × 3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
    [Crossref] [PubMed]
  16. C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28–29), 2754–2758 (2011).
    [Crossref]
  17. D. C. Tee, T. Kambayashi, S. R. Sandoghchi, N. Tamchek, and F. R. Mahamd Adikan, “Efficient, wide angle, structure tuned 1×3 photonic crystal power splitter at 1550nm for triple play applications,” J. Lightwave Technol. 30(17), 2818–2823 (2012).
    [Crossref]
  18. J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
    [Crossref]
  19. F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive parameters,” Comput. Optim. Appl. 51(1), 259–277 (2012).
    [Crossref]
  20. W. J. Kim and J. D. O’Brien, “Optimization of two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method,” J. Opt. Soc. Am. B 21(2), 289–295 (2004).
    [Crossref]
  21. T. X. Ma, Y. S. Wang, and C. Z. Zhang, “Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins,” Opt. Commun. 312(4), 68–72 (2014).
    [Crossref]
  22. J. M. Jin, The Element Method in Electromagnetics, third edition (Wiley-IEEE, 2014).
  23. J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev. 93(4), 707–716 (1954).
    [Crossref]
  24. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express 16(19), 14812–14820 (2008).
    [Crossref] [PubMed]
  25. B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
    [Crossref]
  26. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18(5), 5221–5228 (2010).
    [Crossref] [PubMed]
  27. M. Bass, Handbook of Optics, second edition (McGraw-Hill, 1994), Chap. 33.
  28. X. Jin, M. Sesay, Z. Ouyang, Q. Liu, M. Lin, K. Tao, and D. Zhang, “Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands,” Opt. Express 21(21), 25592–25606 (2013).
    [Crossref] [PubMed]
  29. K. Sokada, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  30. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic, 2003).
  31. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
    [Crossref]

2016 (2)

S. Feng, J. H. Jiang, A. A. Rashid, and S. John, “Biosensor architecture for enhanced disease diagnostics: lab-in-a-photonic-crystal,” Opt. Express 24(11), 12166–12191 (2016).
[Crossref] [PubMed]

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

2015 (2)

2014 (3)

J. H. Jiang and S. John, “Photonic crystal architecture for room-temperature equilibrium Bose-Einstein condensation of exciton polaritons,” Phys. Rev. X 4(3), 031025 (2014).
[Crossref]

D. C. Tee, N. Tamchek, Y. G. Shee, and F. R. Adikan, “Numerical investigation on cascaded 1 × 3 photonic crystal power splitter based on asymmetric and symmetric 1 × 2 photonic crystal splitters designed with flexible structural defects,” Opt. Express 22(20), 24241–24255 (2014).
[Crossref] [PubMed]

T. X. Ma, Y. S. Wang, and C. Z. Zhang, “Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins,” Opt. Commun. 312(4), 68–72 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (1)

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28–29), 2754–2758 (2011).
[Crossref]

2010 (4)

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40(4), 863–872 (2010).

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1 × 3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
[Crossref] [PubMed]

P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18(5), 5221–5228 (2010).
[Crossref] [PubMed]

2009 (1)

B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[Crossref]

2008 (1)

2004 (2)

2001 (1)

1998 (1)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[Crossref]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

1954 (1)

J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev. 93(4), 707–716 (1954).
[Crossref]

Adikan, F. R.

Ai, W.

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

Danaie, M.

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40(4), 863–872 (2010).

de Ridder, R. M.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

De Zoysa, M.

Erol, A. E.

Fan, S.

S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18(2), 162–165 (2001).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Feng, S.

Foghani, S.

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40(4), 863–872 (2010).

Gao, F.

F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive parameters,” Comput. Optim. Appl. 51(1), 259–277 (2012).
[Crossref]

Gu, B. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[Crossref]

Han, L.

F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive parameters,” Comput. Optim. Appl. 51(1), 259–277 (2012).
[Crossref]

Haus, H. A.

Hoekstra, H. J. W. M.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Huang, K.

Ishizaki, K.

Jiang, J. H.

S. Feng, J. H. Jiang, A. A. Rashid, and S. John, “Biosensor architecture for enhanced disease diagnostics: lab-in-a-photonic-crystal,” Opt. Express 24(11), 12166–12191 (2016).
[Crossref] [PubMed]

J. H. Jiang and S. John, “Photonic crystal architecture for room-temperature equilibrium Bose-Einstein condensation of exciton polaritons,” Phys. Rev. X 4(3), 031025 (2014).
[Crossref]

Jin, X.

Joannopoulos, J. D.

S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18(2), 162–165 (2001).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

John, S.

S. Feng, J. H. Jiang, A. A. Rashid, and S. John, “Biosensor architecture for enhanced disease diagnostics: lab-in-a-photonic-crystal,” Opt. Express 24(11), 12166–12191 (2016).
[Crossref] [PubMed]

J. H. Jiang and S. John, “Photonic crystal architecture for room-temperature equilibrium Bose-Einstein condensation of exciton polaritons,” Phys. Rev. X 4(3), 031025 (2014).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

Kaatuzian, H.

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40(4), 863–872 (2010).

Kalafi, M.

B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[Crossref]

Kambayashi, T.

Kang, X. L.

Kauppinen, L. J.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Kawaguchi, S.

Kawamoto, Y.

Kawata, S.

Khalkhali, T. F.

B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[Crossref]

Kim, H. J.

Kim, W. J.

Kristensen, M.

Krüger, A. C.

Lee, H.

Lee, H. S.

Lee, S. G.

Li, Y. P.

Li, Z. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[Crossref]

Lin, M.

Liu, C. Y.

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28–29), 2754–2758 (2011).
[Crossref]

Liu, Q.

Loferski, J. J.

J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev. 93(4), 707–716 (1954).
[Crossref]

Ma, T. X.

T. X. Ma, Y. S. Wang, and C. Z. Zhang, “Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins,” Opt. Commun. 312(4), 68–72 (2014).
[Crossref]

Mahamd Adikan, F. R.

Malureanu, R.

Manolatou, C.

Moon, K. M.

Noda, S.

O, B. H.

O’Brien, J. D.

Ouyang, Z.

Park, I.

Park, S. G.

Pinkert, T. J.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Proietti Zaccaria, R.

Rashid, A. A.

Rezaei, B.

B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[Crossref]

Sandoghchi, S. R.

Sesay, M.

Shee, Y. G.

Shen, L. F.

Shi, D.

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

Shi, P.

Shoji, S.

Shuai, T. P.

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

Sözüer, H. S.

Tamchek, N.

Tanaka, Y.

Tao, K.

Tee, D. C.

Umeda, T.

Vala, A. S.

B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[Crossref]

Verma, P.

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Wang, Y. S.

T. X. Ma, Y. S. Wang, and C. Z. Zhang, “Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins,” Opt. Commun. 312(4), 68–72 (2014).
[Crossref]

Wang, Z. Y.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yang, G. Z.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[Crossref]

Yang, J.

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

Yu, Z. H.

Yuan, J. H.

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

Zhang, C. Z.

T. X. Ma, Y. S. Wang, and C. Z. Zhang, “Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins,” Opt. Commun. 312(4), 68–72 (2014).
[Crossref]

Zhang, D.

Zhang, M.

Zhang, X. M.

Zheng, X. D.

Comput. Optim. Appl. (1)

F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive parameters,” Comput. Optim. Appl. 51(1), 259–277 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photonics Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Appl. (1)

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40(4), 863–872 (2010).

Opt. Commun. (3)

J. H. Yuan, J. Yang, D. Shi, W. Ai, and T. P. Shuai, “Design optimization of a low-loss and wide-band sharp 120°waveguide bend in 2D photonic crystals,” Opt. Commun. 367, 356–363 (2016).
[Crossref]

T. X. Ma, Y. S. Wang, and C. Z. Zhang, “Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins,” Opt. Commun. 312(4), 68–72 (2014).
[Crossref]

B. Rezaei, T. F. Khalkhali, A. S. Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282(14), 2861–2869 (2009).
[Crossref]

Opt. Express (9)

P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18(5), 5221–5228 (2010).
[Crossref] [PubMed]

R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express 16(19), 14812–14820 (2008).
[Crossref] [PubMed]

X. Jin, M. Sesay, Z. Ouyang, Q. Liu, M. Lin, K. Tao, and D. Zhang, “Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands,” Opt. Express 21(21), 25592–25606 (2013).
[Crossref] [PubMed]

M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1 × 3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
[Crossref] [PubMed]

D. C. Tee, N. Tamchek, Y. G. Shee, and F. R. Adikan, “Numerical investigation on cascaded 1 × 3 photonic crystal power splitter based on asymmetric and symmetric 1 × 2 photonic crystal splitters designed with flexible structural defects,” Opt. Express 22(20), 24241–24255 (2014).
[Crossref] [PubMed]

I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and H. Lee, “Photonic crystal power-splitter based on directional coupling,” Opt. Express 12(15), 3599–3604 (2004).
[Crossref] [PubMed]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures,” Opt. Express 23(19), A1040–A1050 (2015).
[Crossref] [PubMed]

A. E. Erol and H. S. Sözüer, “High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide,” Opt. Express 23(25), 32690–32695 (2015).
[Crossref] [PubMed]

S. Feng, J. H. Jiang, A. A. Rashid, and S. John, “Biosensor architecture for enhanced disease diagnostics: lab-in-a-photonic-crystal,” Opt. Express 24(11), 12166–12191 (2016).
[Crossref] [PubMed]

Phys. Lett. A (1)

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28–29), 2754–2758 (2011).
[Crossref]

Phys. Rev. (1)

J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev. 93(4), 707–716 (1954).
[Crossref]

Phys. Rev. Lett. (3)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Phys. Rev. X (1)

J. H. Jiang and S. John, “Photonic crystal architecture for room-temperature equilibrium Bose-Einstein condensation of exciton polaritons,” Phys. Rev. X 4(3), 031025 (2014).
[Crossref]

Other (5)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

K. Sokada, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic, 2003).

M. Bass, Handbook of Optics, second edition (McGraw-Hill, 1994), Chap. 33.

J. M. Jin, The Element Method in Electromagnetics, third edition (Wiley-IEEE, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the star-type structure, and (b) magnified view for box 1 and 2 shown in (a), where the structure parameters of the defect region are indicated.
Fig. 2
Fig. 2 The PERs and DOPs versus d for the TE PCW (a) and versus r for the TM PCW (b), where the red and blue lines represent the PER and DOP, respectively.
Fig. 3
Fig. 3 Field distributions of the structure for (a) TE input from port 1, (b) TM input from port 1, (c) TE input from port 4, and (d) TM input from port 4. Here, the side length d of TE defects and radius r of TM defects are 0.53a and 0.156a, respectively.
Fig. 4
Fig. 4 Total outputs versus D1 and D2 for the TE wave in the TE PCW (a) and for the TM wave in the TM PCW (b). The insets in (a) and (b) present the field distributions after optimization for TE and TM waves, respectively.
Fig. 5
Fig. 5 Wavelength scan on total outputs at the wavelength range of absolute PBG, where the red and blue lines are calculated for the TE and TM waves, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n o = 18.5346 + 4.3289 λ 2 ( λ 2 3.9810 ) 1 + 3.7800 λ 2 ( λ 2 11813 ) 1 ,
n e = 29.5222 + 9.3068 λ 2 ( λ 2 2.5766 ) 1 + 9.2350 λ 2 ( λ 2 13521 ) 1 ,
D O P = | ( I TE I TM ) / ( I TE + I TM ) | ,
P E R TE = 10 × log 10 ( I TE / I TM ) ,
P E R TM = 10 × log 10 ( I TM / I TE ) ,

Metrics