Abstract

We demonstrate that enhanced linear absorption coefficient (LAC) of in-plane monolayer graphene is determined by the optical transmission spectra of a graphene layer coated symmetrically coupled add-drop silicon microring resonator (SC-ADSMR), of which the value is around 0.23 dB/µm. In contrast to the traditional cut-back method, the measured results aren’t dependent on the coupling efficiency between the fiber tip and the waveguide. Moreover, precisely evaluation of graphene layer coated silicon microring resonator (SMR) is crucial for future optoelectronic devices with compact footprint and low power consumption.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators

Iain F Crowe, Nicholas Clark, Siham Hussein, Brian Towlson, Eric Whittaker, Milan M Milosevic, Frederic Y Gardes, Goran Z Mashanovich, Matthew P Halsall, and Aravind Vijayaraghaven
Opt. Express 22(15) 18625-18632 (2014)

Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator

Mengxi Ji, Heng Cai, Like Deng, Ying Huang, Qingzhong Huang, Jinsong Xia, Zhiyong Li, Jinzhong Yu, and Yi Wang
Opt. Express 23(14) 18679-18685 (2015)

Resonance enhanced absorption in a graphene monolayer using deep metal gratings

B. Zhao, J. M. Zhao, and Z. M. Zhang
J. Opt. Soc. Am. B 32(6) 1176-1185 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  2. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  3. Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
    [Crossref] [PubMed]
  4. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  5. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref] [PubMed]
  6. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
    [Crossref]
  7. M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, “Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator,” Opt. Express 23(14), 18679–18685 (2015).
    [Crossref] [PubMed]
  8. X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, and J. Wang, “Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal,” Opt. Express 24(7), 7168–7177 (2016).
    [Crossref] [PubMed]
  9. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
    [Crossref] [PubMed]
  10. L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
    [Crossref] [PubMed]
  11. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  12. C. Y. Wong, Z. Cheng, Z. Shi, Y. M. Chen, K. Xu, and H. K. Tsang, “Mode-locked fiber laser using graphene on silicon waveguide,” in Proceedings of 10th International Conference on Group IV Photonics (GFP) (IEEE 2013), pp. 35–36.
    [Crossref]
  13. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
    [Crossref]
  14. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
    [Crossref]
  15. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  16. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
    [Crossref]
  17. H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
    [Crossref]
  18. M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
    [Crossref] [PubMed]
  19. C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
    [Crossref]
  20. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
    [Crossref] [PubMed]
  21. R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
    [Crossref]
  22. L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Proceedings of Asia Communications and Photonics Conference (Optical Society of America, 2012), pp. AS1B–3.
    [Crossref]
  23. G. Kovacevic and S. Yamashita, “Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits,” Opt. Express 24(4), 3584–3591 (2016).
    [Crossref] [PubMed]
  24. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  25. C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
    [Crossref] [PubMed]
  26. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
    [Crossref] [PubMed]
  27. V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
    [Crossref]
  28. R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
    [Crossref]
  29. T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
    [Crossref]
  30. I. F. Crowe, N. Clark, S. Hussein, B. Towlson, E. Whittaker, M. M. Milosevic, F. Y. Gardes, G. Z. Mashanovich, M. P. Halsall, and A. Vijayaraghaven, “Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators,” Opt. Express 22(15), 18625–18632 (2014).
    [Crossref] [PubMed]
  31. X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
    [Crossref] [PubMed]
  32. D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
    [Crossref]
  33. P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  34. V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
    [Crossref] [PubMed]

2016 (3)

2015 (6)

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
[Crossref] [PubMed]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
[Crossref] [PubMed]

M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, “Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator,” Opt. Express 23(14), 18679–18685 (2015).
[Crossref] [PubMed]

C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
[Crossref]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

2014 (5)

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

I. F. Crowe, N. Clark, S. Hussein, B. Towlson, E. Whittaker, M. M. Milosevic, F. Y. Gardes, G. Z. Mashanovich, M. P. Halsall, and A. Vijayaraghaven, “Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators,” Opt. Express 22(15), 18625–18632 (2014).
[Crossref] [PubMed]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

2013 (3)

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

2012 (4)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

2011 (3)

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2009 (2)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

2008 (2)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

2007 (2)

2002 (1)

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

1995 (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Absil, P.

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

Alù, A.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Anugrah, Y.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Assefa, S.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Avouris, P.

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Bachman, D.

C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
[Crossref]

Bachmann, D.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cai, H.

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Chatzidimitriou, D.

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Chen, P.-Y.

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Clark, N.

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Crowe, I. F.

Dai, D.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Deng, L.

Ding, Y.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Evans, C. C.

Farmer, D. B.

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Feng, G.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Ferrari, A. C.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Frandsen, L. H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Fromherz, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Furchi, M. M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Gan, X.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Gao, Y.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Gardes, F. Y.

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Grover, R.

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

Gu, T.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Guider, R.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Halsall, M. P.

Hatami, F.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

He, S.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Hibino, H.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Ho, P.-T.

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

Hone, J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Hone, J. C.

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

Horvath, C.

C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
[Crossref]

Hu, H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Hu, X.

Huang, Q.

Huang, Y.

Humer, M.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Hussein, S.

Ibrahim, T.

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

Jenkins, K. A.

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Ji, M.

Johnson, F.

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Khan, M. H.

Koester, S. J.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Kou, R.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Kovacevic, G.

Kriezis, E. E.

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Kurz, H.

Kwong, D. L.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Kwong, D.-L.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

Li, H.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Li, M.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

Li, Z.

Lim, C.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, Y. M.

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Liu, C.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Lo, G.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Lo, G. Q.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Lo, G.-Q.

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Long, Y.

Mak, K. F.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Mashanovich, G. Z.

McMillan, J. F.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Meric, I.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Mi, G.

C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
[Crossref]

Midrio, M.

Milosevic, M. M.

Mohsin, M.

Mortensen, N. A.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Mueller, T.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Nakajima, H.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Neumaier, D.

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Noculak, A.

Novoselov, K. S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Otto, M.

Petrone, N.

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Pitilakis, A.

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Pospischil, A.

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

Qi, M.

Romagnoli, M.

Ruan, Z.

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Schall, D.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shen, H.

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Shepard, K.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Shiue, R.-J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Small, J. P.

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Sorianello, V.

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Suntivich, J.

Suzuki, S.

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Tanabe, S.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Tang, D.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Towlson, B.

Tsuchizawa, T.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Valdes-Garcia, A.

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Van, V.

C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
[Crossref]

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

van der Zande, A.

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vijayaraghaven, A.

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Wang, A.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Wang, J.

Wang, Y.

Warabi, K.

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Whittaker, E.

Wong, C. W.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Xia, J.

Xiao, S.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

Xu, Y.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

Yamada, K.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Yamamoto, T.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

Yamashita, S.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

You, Y.

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Yu, J.

Yu, L.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

Yu, M.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

Yvind, K.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zheng, J.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

Zhou, H.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

Zhou, S.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Zhu, L.

Zhu, X.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

ACS Nano (2)

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8(11), 11386–11393 (2014).
[Crossref] [PubMed]

P.-Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Gu, H. Zhou, J. F. McMillan, N. Petrone, A. van der Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Coherent four-wave mixing on hybrid graphene-silicon photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 20(1), 7500106 (2014).
[Crossref]

V. Van, T. Ibrahim, P. Absil, F. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Horvath, D. Bachman, G. Mi, and V. Van, “Fabrication and characterization of edge-conformed graphene-silicon waveguides,” IEEE Photonics Technol. Lett. 27(6), 585–587 (2015).
[Crossref]

J. Appl. Phys. (2)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of optical absorption and polarization dependence of single-layer graphene integrated on a silicon wire waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nano Lett. (3)

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12(11), 5626–5631 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref] [PubMed]

Nat. Photonics (4)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6(8), 554–559 (2012).
[Crossref]

A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (8)

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

I. F. Crowe, N. Clark, S. Hussein, B. Towlson, E. Whittaker, M. M. Milosevic, F. Y. Gardes, G. Z. Mashanovich, M. P. Halsall, and A. Vijayaraghaven, “Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators,” Opt. Express 22(15), 18625–18632 (2014).
[Crossref] [PubMed]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478–6490 (2015).
[Crossref] [PubMed]

C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23(9), 11160–11169 (2015).
[Crossref] [PubMed]

M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, “Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator,” Opt. Express 23(14), 18679–18685 (2015).
[Crossref] [PubMed]

G. Kovacevic and S. Yamashita, “Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits,” Opt. Express 24(4), 3584–3591 (2016).
[Crossref] [PubMed]

X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, and J. Wang, “Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal,” Opt. Express 24(7), 7168–7177 (2016).
[Crossref] [PubMed]

Science (2)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Other (2)

C. Y. Wong, Z. Cheng, Z. Shi, Y. M. Chen, K. Xu, and H. K. Tsang, “Mode-locked fiber laser using graphene on silicon waveguide,” in Proceedings of 10th International Conference on Group IV Photonics (GFP) (IEEE 2013), pp. 35–36.
[Crossref]

L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Proceedings of Asia Communications and Photonics Conference (Optical Society of America, 2012), pp. AS1B–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The processes of monolayer graphene preparation and SC-ADSMR device fabrication.
Fig. 2
Fig. 2 (a) SEM image of the SC-ADSMR covered with patterned monolayer graphene (top view). Close-up view of the two coupling regions are also shown. (b) Zoom-in SEM images of the local monolayer graphene covered area in (a), showing that monolayer graphene uniformly clings to the silicon waveguide. Here X is the radial length of side-monolayer-graphene and W is the width of waveguide. (c) Photonic crystal grating coupler used for coupling light into and out of the SC-ADSMR device.
Fig. 3
Fig. 3 (a) Experimental setup for characterizing the LAC of in-plane graphene. (b) Optical transmission spectra of the SC-ADSMR device before and after monolayer graphene transfer (noted as woGr and wGr respectively). (c) Raman spectra measured in the graphene-covered region (red) and in the area where graphene is lifted off (blue).
Fig. 4
Fig. 4 Scheme of the SC-ADSMR with patterned monolayer graphene
Fig. 5
Fig. 5 Surface dynamic conductivity of monolayer graphene as a function of its chemical potential
Fig. 6
Fig. 6 (a) Cross section of the simulated GSHW. (b) Experimental and simulated LAC of in-plane monolayer graphene as a function of the five resonant wavelengths of our SC-ADSMR device. In this simulation, the FEs of the SC-ADSMR and side-monolayer-graphene which is clung to the waveguide have both been taken into consideration. Here, λ1 = 1537.94 nm, λ2 = 1543.62 nm, λ3 = 1549.34 nm, λ4 = 1555.10 nm and λ5 = 1560.90 nm represent the five resonant wavelengths of our SC-ADSMR device after graphene transfer process.
Fig. 7
Fig. 7 (a) The x, y and z components of electrical field in the GSHW. Here the mesh grids are also shown. (b) The LAC of GSHW in Fig. 6(a) with a varying parameter of X. The inset shows typical fundamental quasi TE mode profile of simulated GSHW at 1550 nm. Other parameters for this simulation are also shown in the box above.
Fig. 8
Fig. 8 Simulated waveguide loss for TM mode as a function of parameter X.

Tables (1)

Tables Icon

Table 1 Parameters for LAC deduction before and after graphene transfer.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

T t h r o u g h ( λ ) = ( λ λ 0 ) 2 + ( F S R 4 π ) 2 ( κ p 2 ) 2 ( λ λ 0 ) 2 + ( F W H M t 2 ) 2 .
E R t ( d B ) = 10 log 10 ( γ t ) .
κ p 2 = 2 π F W H M t γ t F S R ,
κ t 2 = κ d 2 = π F W H M t ( 1 γ t ) F S R ,
α ( d B / r o u n d ) = 10 log 10 ( 1 κ p 2 ) .
Q = λ 0 F W H M t ,
F i n e s s e = F S R F W H M t = 2 π κ t 2 + κ d 2 + κ p 2 ,
F E = F i n e s s e π .
L A C s i l i c o n = α w o G r 2 π R ,
L A C G S H W = ( α w G r α w o G r ( 1 n ) ) 2 π n R .
L A C G r _ r e s o n a t o r = L A C G S H W L A C s i l i c o n .
σ ( ω , μ c , τ , T ) = σ int r a ( ω , μ c , τ , T ) + σ int e r ( ω , μ c , τ , T ) .
σ int r a ( ω , μ c , τ , T ) = i e 2 k B T π 2 ( ω + i τ 1 ) [ | μ c | k B T + 2 I n ( exp ( | μ c | k B T ) + 1 ) ] .
σ int e r ( ω , μ c , τ , T ) = i e 2 4 π I n [ 2 | μ c | ( ω + i τ 1 ) 2 | μ c | + ( ω + i τ 1 ) ] .
J // = σ ( ω , μ c , τ , T ) ( F E E // ) ,
J = 0.
α ( d B / μ m ) = 2 k 0 n e f f , i m a g × 4.343 × 10 6 .

Metrics